
Logical Modeling Frameworks for the

Optimization of Discrete-Continuous Systems

Ashish Agarwal

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR

the degree of

Doctor of Philosophy

in

Chemical Engineering

Carnegie Institute of Technology

CARNEGIE MELLON UNIVERSITY

Pittsburgh, PA, U.S.A.

Abstract

Often, it is very difficult to pose a model for a system even after the system is concep-

tually understood. The reason is the mathematical languages we employ have few forms

of expression. We define more expressive languages, first for dynamical discrete-continuous

systems, and then more rigorously for mathematical programs (MP). Our approach provides

theoretical basis for designing MP software.

The first framework we define is called linear coupled component automata (LCCA).

It supports finite domain constraints, explicitly handles dynamics, and enforces modular

modeling. We show how LCCA models can be mechanically converted into mathematical

programming (MP) constraints. Currently, chemical process systems are usually modeled

directly with MP constraints. We show with an example that it is much easier to model

hybrid systems in our LCCA framework.

We then pursue a more rigorous approach for the MP part of our work, for the purposes

of providing a computer implementation of an MP framework. There are two main results: a

rich computer language for declaring MPs and automation of certain model transformations.

Mathematically, these correspond to defining a set p of MPs and defining a binary relation

on p.

The set p contains programs as one would want to write in practice, not just canonical

matrix forms. Complex index sets can be defined in intuitive ways, and they are first-class

entities in our theory, not mere notational conveniences eliminated at parse time. This has

many benefits: it retains knowledge of the problem structure, keeps the program size to a

minimum, and speeds up certain operations. Our definition of the semantics elucidates the

nature of MP algorithms and explains the information sought from a solution.

The binary relation on programs p can be defined because a logical formulation allows

treating constraints and programs as mathematical objects. Principally, our definition in-

cludes: a procedure for putting Boolean expressions into conjunctive normal form, and a

procedure for converting disjunctive constraints into mixed-integer inequalities. Neither has

been defined previously for a language as expressive as ours, and the latter has not been

defined as a formal mapping on constraint spaces. Overall this leads to a procedure for

converting general MPs to pure mixed-integer programs (MIPs).

Sets and set relations are defined using the methods of type theory, which espouses a

close relation between mathematics and computation. As a result, the set p can be viewed

simultaneously as a novel definition of MP and as the software architecture for implementing

an MP language. Similarly, the binary relation on p can be directly implemented on a

computer. Several examples of our software’s input and output are provided.

Acknowledgments

Ignacio E. Grossmann has been my co-advisor throughout the Ph.D. program. His work

ethic is well known and appreciated. He has a genuine concern for his students, which I

have seen through the many difficulties he has helped me overcome. His knowledge is broad

and he has led me to study subjects in diverse areas.

My committee members have provided much guidance over the years. Bruce H. Krogh’s

excellent course on hybrid systems originally got me interested in the area. John N. Hooker

has taught me much about the use of logic in mathematical programming. Gary J. Pow-

ers has always supported my efforts to employ Computer Science methods in Chemical

Engineering, something he has been doing for years. Lorenz T. Biegler provided a fresh

perspective on the value of my work.

I have been fortunate to have had great group members. I mention especially Vikas Goel

and Nicolas W. Sawaya. Vikas and I studied for many courses together our first year and

he was always someone I could discuss research problems with. My long discussions with

Nick are the reason I understand many of the concepts in disjunctive programming.

David Swasey has been immensely kind with his time. With no particular benefit to him,

he volunteered to meet me regularly to assist with my ML programming efforts. Without

his guidance, my Ph.D. would certainly have taken longer and the software would be in

poorer shape.

My dad always told me I could do anything, and my mom always made me think about

the value of each thing I chose to do. Both have always been completely supportive and

given me the freedom to pursue my interests. My sisters Monika and Nisha raised me

alongside my parents. Their optimism in my abilities is certainly more than I deserve, but

it has driven me all along.

The Ph.D. program brought me to Pittsburgh, a city to which I had no prior connections.

Now I have so many wonderful friends here; it will be difficult to leave. I won’t try to name

them all, but I want them to know how important they are. I am certain these friendships

will last a lifetime.

Finally, I will attempt to explain the influence my co-advisor Robert Harper has had on

me. Bob is a remarkable researcher and an inspiring teacher. In the last few years, he has

taught me, through individual sessions, more mathematics than I ever imagined I would

know. I rarely managed to pose a question he could not answer. On those few occasions

that he could not derive a result on the spot, he committed himself to finding the answer

and emailing me a thorough explanation. I am privileged to have worked with Bob and

honored that he chose to advise me.

Brief Contents

Abstract ii

Acknowledgments iii

Brief Contents iv

Detailed Contents v

List of Figures x

1 Introduction 1

2 Modeling Hybrid Systems 20

3 Optimizing Hybrid Systems 29

4 Logical Formulation of Mathematical Programs 42

5 Compiling Mathematical Programs 67

6 Index Sets 84

7 Indexed Mathematical Programs 105

8 Compiling Indexed Mathematical Programs 126

9 Application: Switched Flow Process 149

10 Conclusions 174

Appendix A Reformulating Mathematical Programs 182

Appendix B Variable Binding Meta-Logic 192

Appendix C Concrete Syntax 201

Appendix D Data 207

Notation 214

Acronyms 220

Bibliography 221

iv

Detailed Contents

Abstract ii

Acknowledgments iii

Brief Contents iv

Detailed Contents v

List of Figures x

1 Introduction 1

1.1 Modeling Challenges . 2

1.2 Chemical Process Systems . 5

1.3 Hybrid Systems . 6

1.4 Mathematical Programs . 8

1.4.1 Previous Definitions of Mathematical Programs 9

1.4.2 Previous Mathematical Programming Languages 11

1.5 Type Theory . 14

1.6 Programming Languages . 16

1.7 Dissertation Overview . 18

2 Modeling Hybrid Systems 20

2.1 Preliminaries . 21

2.1.1 Hybrid Timeline . 21

2.1.2 Constraints . 22

2.2 Linear Coupled Component Automata . 24

2.3 Hybrid Trajectories . 26

2.4 Results . 27

3 Optimizing Hybrid Systems 29

3.1 Optimization Problems . 29

3.2 Constraint Conversions . 30

3.2.1 Eliminating Infinite Quantifiers . 31

3.2.2 Eliminating Variable Arguments . 32

3.2.3 Converting Finite Domains to Booleans 33

v

DETAILED CONTENTS

3.3 Symmetry Breaking . 34

3.4 Model Transformation . 35

3.5 Conclusions . 39

Appendix 3.A Proof of Theorem 3.1 . 40

4 Logical Formulation of Mathematical Programs 42

4.1 Mathematical Preliminaries . 42

4.1.1 Induction . 42

4.1.2 Types . 45

4.2 Syntax . 46

4.2.1 Full Forms . 47

4.2.1.1 Types . 47

4.2.1.2 Expressions . 47

4.2.1.3 Propositions . 48

4.2.1.4 Programs . 48

4.2.2 Free Variables . 49

4.2.2.1 Free Variables of Expression 49

4.2.2.2 Free Variables of Proposition 50

4.2.2.3 Free Variables of Program 50

4.2.3 Substitution . 51

4.2.3.1 Substitution into Expression 51

4.2.3.2 Substitution into Proposition 52

4.3 Type System . 53

4.3.1 Well-Formed Type . 53

4.3.2 Well-Formed Context . 54

4.3.3 Type of Expression . 54

4.3.4 Well-Formed Proposition . 55

4.3.5 Well-Formed Program . 56

4.4 Refined Types . 56

4.5 Semantics . 58

4.5.1 Evaluation of Expression . 59

4.5.2 Truth of Proposition . 60

4.5.3 Solution of Mathematical Program . 61

4.5.4 Open Forms . 63

4.6 Results . 63

5 Compiling Mathematical Programs 67

5.1 Sub-Languages . 67

5.1.1 Mixed-Integer Programs . 68

5.1.2 Linearity . 69

5.1.3 Mixed-Integer Linear Programs . 69

5.2 Conjunctive Normal Form . 70

5.2.1 Definition of CNF . 70

5.2.2 Transforming to CNF . 71

vi

DETAILED CONTENTS

5.3 Compiling MP to MIP . 73

5.3.1 Type Compiler . 75

5.3.2 Expression Compiler . 76

5.3.2.1 DLF Expression Compiler . 76

5.3.2.2 CONJ Expression Compiler 78

5.3.3 Proposition Compiler . 78

5.3.4 Disjunctive Proposition Compiler . 79

5.3.5 Program Compiler . 81

5.4 Results . 81

6 Index Sets 84

6.1 Syntax . 84

6.1.1 Full Forms . 85

6.1.1.1 Expressions . 85

6.1.1.2 Types . 86

6.1.1.3 Kinds . 87

6.1.1.4 Context . 88

6.1.2 Free Variables . 89

6.1.2.1 Free Variables of Expression 89

6.1.2.2 Free Variables of Type . 89

6.1.2.3 Free Variables of Kind . 90

6.1.3 Substitution . 90

6.1.3.1 Substitution Into Expression 90

6.1.3.2 Substitution Into Type . 90

6.1.3.3 Substitution Into Kind . 91

6.1.3.4 Substitution Into Context . 91

6.1.4 Canonical Forms . 92

6.1.4.1 Canonical Expressions . 92

6.1.4.2 Canonical Types . 92

6.1.4.3 Canonical Kinds . 93

6.2 Semantics . 93

6.2.1 Expression Evaluation . 93

6.2.2 Type Evaluation . 94

6.2.3 Kind Evaluation . 95

6.2.4 Meaning of Open Forms . 95

6.3 Type System . 95

6.3.1 Judgements on Canonical Forms . 96

6.3.1.1 Well-Formed Canonical Kind 96

6.3.1.2 Canonical Kind of Canonical Type 96

6.3.1.3 Canonical Type of Canonical Expression 97

6.3.1.4 Canonical Subtyping . 97

6.3.1.5 Canonical Type Equivalence 98

6.3.1.6 Canonical Subkinding . 98

6.3.1.7 Canonical Kind Equivalence 99

vii

DETAILED CONTENTS

6.3.1.8 Canonical Expression Comparison 99

6.3.1.9 Canonical Expression Equivalence 99

6.3.2 Judgements on Closed Forms . 100

6.3.3 Judgements on Full Forms . 100

6.4 Results . 102

7 Indexed Mathematical Programs 105

7.1 Syntax . 105

7.1.1 Full Forms . 105

7.1.1.1 Types . 106

7.1.1.2 Expressions . 106

7.1.1.3 Propositions . 107

7.1.1.4 Propositional Types . 107

7.1.1.5 Programs . 108

7.1.2 Meta-Operations Relating to Variables 108

7.2 Type System . 109

7.2.1 Well-Formed Type . 109

7.2.2 Well-Formed Context . 109

7.2.3 Type Equivalence . 109

7.2.4 Type of Expression . 111

7.2.5 Algorithmic Type of Expression . 112

7.2.6 Well-Formed Propositional Type . 115

7.2.7 Propositional Type Equivalence . 115

7.2.8 Type of Proposition . 115

7.2.9 Well-Formed Program . 116

7.3 Refined Types . 117

7.4 Semantics . 118

7.4.1 Evaluation of Expression . 118

7.4.2 Truth of Proposition . 120

7.4.3 Solution of Program . 123

7.4.4 Open Forms . 123

7.5 Results . 124

8 Compiling Indexed Mathematical Programs 126

8.1 Application Normal Form . 126

8.1.1 Definition of ANF . 127

8.1.2 Transformation to ANF . 127

8.2 Sub-Languages . 130

8.2.1 Indexed Mixed-Integer Programs . 130

8.2.2 Indexed Linearity . 131

8.3 Indexed Conjunctive Normal Form . 132

8.3.1 Definition of Indexed CNF . 133

8.3.2 Transforming to Indexed CNF . 136

8.4 Compiling Indexed MP to Indexed MIP . 138

viii

DETAILED CONTENTS

8.4.1 Type Compiler . 140

8.4.2 Expression Compiler . 141

8.4.2.1 DLF Expression Compiler . 142

8.4.2.2 CONJ Expression Compiler 142

8.4.3 Proposition Compiler . 143

8.4.4 Disjunctive Proposition Compiler . 144

8.4.5 Program Compiler . 147

8.5 Results . 147

9 Application: Switched Flow Process 149

9.1 LCCA Model . 150

9.2 MP Model . 153

9.3 MIP Model . 156

9.4 Formal MP Model . 160

9.5 Formal MIP Model . 165

9.6 Results . 173

10 Conclusions 174

10.1 Summary . 174

10.2 Assessment . 176

10.3 Future Work . 180

Appendix A Reformulating Mathematical Programs 182

A.1 Simple Reformulations . 183

A.2 Convex Hull Reformulation . 185

A.3 Adding Boolean Propositions . 188

A.4 Conclusions . 190

Appendix B Variable Binding Meta-Logic 192

B.1 Syntax . 193

B.2 Judgements . 194

B.3 Meta-Operations . 196

B.3.1 Free Variables . 196

B.3.2 Substitution . 196

B.3.3 Alpha Conversion . 197

B.4 Example: Indexed Program Logic . 198

Appendix C Concrete Syntax 201

Appendix D Data 207

Notation 214

Acronyms 220

Bibliography 221

ix

List of Figures

2.1 Schematic of switched flow process. 20

2.2 Hybrid timeline. 21

2.3 Feasible trajectory for thermostat example. 28

6.1 Judgement dependencies in a semantic type theory. 95

8.1 Venn diagram of various forms of Boolean expressions. 135

9.1 Schematic of switched flow process. 150

9.2 Initial segments of two feasible trajectories for switched flow process. 152

(a) Lower material levels, more switching. 152

(b) Higher material levels, less switching. 152

9.3 Optimal trajectories under two objectives for switched flow process. 160

(a) Minimize cost. 160

(b) Minimize makespan. 160

A.1 Relationships between specialized MP frameworks. 182

A.2 Properties of disjunctive constraint (A.2). 183

(a) Feasible region. 183

(b) Big-M relaxation. 183

(c) Convex hull relaxation. 183

x

Chapter 1

Introduction

Modeling refers to the process of converting a conceptual understanding of a system into

a mathematical representation, or model. Often, we understand a system well but still

have difficulty declaring a model for it. This is because there is a large discrepancy in the

expressive power of the natural language, e.g. English, we think in and the mathemati-

cal language, e.g. linear algebra or the infinitesimal calculus, in which the model must be

declared. Although natural languages are highly expressive, they are not formal. One ap-

proach to closing this gap would be to attempt a formal interpretation of natural languages,

but this has little chance of success. A more modest goal is to enhance formal languages

with additional forms of expression.

In particular, we are concerned with modeling dynamical systems with mixed discrete-

continuous phenomena, called hybrid systems. (Systems considered in this work are re-

stricted to piecewise-linear dynamics in the continuous regime.) These are increasingly

important in the chemical process industry, where continuous dynamics occur in the form of

reaction rates and material flows, and discrete dynamics arise from control decisions that for

example call for one or another reaction to be run at various times. Such a system cannot

be modeled as a set of differential equations alone, the theory within which most engineer-

ing models are presently defined. In the process industry, these systems have usually been

modeled with mathematical programming (MP) constraints.

More recently, frameworks based on hybrid automata (HA) are being increasingly used.

Several variations of this framework exist, usually with an emphasis on their differing levels

of theoretical expressivity. We introduce another HA style framework that we call linear

coupled component automata (LCCA). Our emphasis is on providing features that ease

modeling in practice. We show through examples that LCCA models are significantly easier

to formulate than MP models.

There is, however, a mature theory for optimizing systems represented in the MP frame-

work. So it would be valuable to derive the equivalent MP model from a given LCCA

model. We provide a transformation procedure for doing this, thereby allowing us to use

LCCA for its modeling benefits and MP for its algorithmic ones. However, neither the defi-

nition of LCCA nor its transformation to MP are provided in a manner leading to computer

implementation. This is a shortcoming of much existing work also, as we will discuss in

1

1.1. MODELING CHALLENGES

detail.

We address this by providing a type theoretic (logical) formulation of mathematical

programming. This firstly allows inclusion of programs as written in practice, not just

canonical forms. It thus leads immediately to a rich computer language for expressing

mathematical programs. Of principal importance is our support of index sets, formalized

as a logic of finitary types.

Secondly, a logical formulation defines programs and constraints as mathematical objects

on which operations can be defined, as where previous definitions of MP only support

numeric operations. This allows us to provide Boolean and disjunctive constraints, which

are often intuitive declarations, and automatically transform them to pure mixed-integer

programming (MIP) constraints, the form required by most algorithms.

In summary, we claim that

It is possible to design more expressive mathematical languages

to facilitate modeling, and to compile these to prior languages,

allowing use of existing algorithms.

In the rest of this chapter, we describe the modeling challenges and the proposed solution

methodology in more depth.

1.1 Modeling Challenges

Consider the following conceptual description of a common process in the chemicals industry:

There are two streams flowing into a reactor, one at rate 6.3 and the other at

rate 5.0. What is the total flow into the reactor?

We would like to declare a mathematical model of this system, which is

f1, f2, ftot ∈ R (1.1a)

f1 = 6.3 (1.1b)

f2 = 5.0 (1.1c)

ftot = f1 + f2 (1.1d)

This small example explains what we mean by modeling. First, variables representing the

appropriate quantities must be declared. Secondly, statements on those variables must

be made. We have converted the conceptual explanation of a system into mathematical

statements.

Variable declarations are often omitted in engineering models because it is implicit that

all variables are of type real. But providing multiple data types is a principal technique we

use to enhance a framework’s expressivity, so we will have to state variables’ types.

Now, let us consider a slightly more complicated system:

CHAPTER 1. INTRODUCTION 2

1.1. MODELING CHALLENGES

A reactor can run one of three reactions. If rxnX is run, then the temperature

must stay below 400. If rxnZ is run, the temperature must be below 600, and

the maximum temperature the reactor can handle is 1000.

Again, we must think of a formal model. Here is one option:

x, y, z ∈ {0, 1} (1.2a)

Θx,Θy,Θz ∈ R (1.2b)

Θ ∈ R (1.2c)

x + y + z = 1 (1.2d)

Θ = Θx + Θy + Θz (1.2e)

0 ≤ Θx ≤ 400x (1.2f)

0 ≤ Θy ≤ 1000y (1.2g)

0 ≤ Θz ≤ 600z (1.2h)

Variables x, y, and z must take either the value 0 or 1, and the others are of type real. The

first equation assures that exactly one of the reactions is run. The second appears odd; it

says that the overall temperature is a sum of three others. In the last three constraints, we

have assured that exactly one of Θx, Θy, or Θz will be non-zero, and it will be bounded

between a minimum and maximum value. Now we see how the temperature equation works.

It is effectively setting the actual temperature variable of concern Θ to one of the Θi’s.

Formulating model (1.2) was somehow more complicated than formulating (1.1). Model

(1.1) is self-explanatory. All that was required was to convert English words in the con-

ceptual description into mathematical symbols. In contrast, constraints in model (1.2) rely

on various tricks. Adding three temperatures is an awkward statement of physics and was

certainly not implied by the conceptual description.

Conversely, the conceptual description does require the temperature Θ to stay below

400 if rxnX is run, but none of the constraints in the formal model states this directly.

It is only by understanding all statements simultaneously that we infer this condition is

being enforced. Thus, a statement that stands alone in our conceptual understanding has

somehow become coupled with all other statements in the formal model. Modularity is

broken. Removing this condition or adding a similar condition for a fourth reaction would

require modifying multiple constraints in the model.

Both conceptual systems were equally easy to understand. So what made modeling the

second one more difficult? The first one is a purely continuous system, as where the second

combines discrete and continuous phenomena. Perhaps discrete-continuous systems are just

fundamentally harder to model. We argue that this need not be the case. Rather, the

difficulty arose from selecting an inappropriate modeling framework.

CHAPTER 1. INTRODUCTION 3

1.1. MODELING CHALLENGES

The framework or language employed to model the first system is linear algebra. The sec-

ond employs mixed-integer programming (MIP) constraints1, discussed in Nemhauser and

Wolsey (1999). MIPs extend linear algebraic style constraints by allowing select variables to

be restricted to integer values. This single extension allows modeling a much broader class

of systems, and changes the required algorithms significantly.

MIPs allow modeling a broad class of systems in theory, but general mathematical pro-

grams frequently employ other constructs that significantly ease model formulation in prac-

tice. Balas (1974) discusses the use of disjunctive constraints, which require only one of sev-

eral inequalities to hold, and Raman and Grossmann (1994) introduced the use of Booleans

within the disjunctive constraints. With these additional language features, we can provide

the following MP model for the above three reaction system,

x, y, z ∈ {true, false} (1.3a)

Θ ∈ R (1.3b)

x Y y Y z (1.3c)

0 ≤ Θ ≤ 1000 (1.3d)

[

x

Θ ≤ 400

]

∨ [y] ∨

[

z

Θ ≤ 600

]

(1.3e)

where Y stands for exclusive or and ∨ for normal or. All variables are physically reasonable,

i.e. part of the conceptualization of the system, and the constraints are virtually self-

explanatory. It is clear that 1000 is an upper limit on the temperature irrespective of what

reaction is run, as where in the previous model it appeared to be associated with rxnY.

The MP model (1.3) is easier to declare, understand, and modify, as compared to the MIP

model (1.2). It also has fewer variables and fewer constraints.

Although the general MP model serves as a better modeling framework, most algorithms

require the model in the pure MIP format. Ideally then, one could provide the MP model

and have it converted automatically to the MIP model. The operative word here is auto-

matically. It is well known how to do this manually. Model (1.2) is known as the convex-hull

reformulation of model (1.3). This method is discussed in Raman and Grossmann (1994)

and follows from Balas (1985). The automation challenge is discussed soon, but for now we

proceed with a broader discussion.

The previous example shows that two frameworks, MIP and MP, can be used to model

the identical physical system. Other frameworks also exist (e.g. Hooker and Osorio, 1999),

and, most importantly, can be invented. A language supporting finite domain variables

would allow replacing the three variables x, y, and z with a single variable

q ∈ {rxnX, rxnY, rxnZ} .

1MILP models are always declared for optimization purposes. So an objective is always included also.
We disregard this for now as we are focussed on the modeling aspects.

CHAPTER 1. INTRODUCTION 4

1.2. CHEMICAL PROCESS SYSTEMS

This would eliminate the need for the mutual exclusivity constraint, equation (1.2d) in the

MIP model and (1.3c) in the MP model.

MP is a richer modeling framework than pure MIP because it provides Boolean operators

and disjunctive constraints. More sophisticated types and operators will be required to

model real industrial systems. We discuss such systems in the next section and review the

previous efforts made to model them.

1.2 Chemical Process Systems

Much of the early work on chemical process systems had to do with the design of chemical

plants. The mathematical model overall can be viewed as a system of differential algebraic

equations (DAEs). However, one cannot simply begin writing DAEs for such a large sys-

tem. It is necessary to consider smaller parts individually and then couple those parts.

A conceptual guide for doing this is the flowsheet. Although not discussed as a modeling

framework in the literature (e.g. Westerberg et al., 1979), we can see that a flowsheet is

essential to organizing one’s understanding about a large-scale system. A chemical plant is

viewed as consisting of separate unit operations connected by pipes. Each unit operation

can be defined separately and the equations for each coupled afterwards. Flowsheets are so

standard that they are hardly recognized as an innovation, but imagine trying to declare all

the equations describing a chemical plant without envisioning a flowsheet.

Flowsheets were used to model only the continuous aspects of a chemical plant. Kondili

et al. (1993) introduced the state-task network (STN) to allow modeling systems with dis-

crete and continuous aspects. In a flowsheet, each node represents a specific volume of space,

e.g. a reactor or heat exchanger. A task node, on the other hand, represents an abstract

process, which might occur in any one of several locations. The discrete choice of which

unit will run a process can thus be represented.

Discussions about STN models often regard computational efficiency (e.g. Maravelias

and Grossmann, 2003; Ierapetritou and Floudas, 1998). When perceived as a modeling

framework, their use can be described as follows. A modeler draws a diagram of the network,

specifies the available equipment, states which tasks can run on which equipment, and

declares other numerical parameters. All the information required to understand the system

is contained in such a description, but this knowledge is not encoded in a formal theory.

The formal theory is mathematical programming, and ultimately the MP constraints must

be provided. The cited works explain how such models can be obtained from the conceptual

description.

Flowsheets, STNs, and other similar frameworks are purely conceptual. They aid the

modeler in formulating a model, but they themselves cannot be considered formal models.

Our aim is to provide novel formal modeling frameworks.

In summary, mathematical programming models have been a mainstay in the process

industry (Kallrath, 2000) when the concern is to optimize mixed discrete-continuous sys-

tems. Unfortunately, MP models can require significant expertise to formulate. Conceptual

frameworks such as the STN reduce this burden, but the MP model must eventually be

provided. It would be useful to have alternative frameworks in which formal models could

CHAPTER 1. INTRODUCTION 5

1.3. HYBRID SYSTEMS

be expressed more easily than in MP. We discuss such alternatives in the next section.

1.3 Hybrid Systems

Mathematical programs allow representing systems with mixed discrete-continuous dynam-

ics. Dynamics are not however explicitly supported. Time has no special status; it is just

another variable. As a result there is no support for making statements such as something

happens after something else and the conditions under which this is so. Such a concept

can be expressed in theory, but much ingenuity might be required to think of the appro-

priate constraints. Several frameworks have been proposed recently to represent dynamical

discrete-continuous systems, called hybrid systems.

Barton and Pantelides (1994) provided one of the earliest in the process literature (but

see references therein for earlier efforts). They augmented the theory of differential alge-

braic equations (DAEs) with an index set, which serves as the possible discrete modes of a

system. Each index was associated with a different DAE. Their focus was on the numerical

complications that arise as a consequence of switching between DAEs. For instance, how to

accurately detect the time at which a switching condition is satisfied, called event detection.

The language for expressing discrete conditions is still not very flexible; only a single discrete

variable is allowed for example.

The mixed logical dynamical system defined in Bemporad and Morari (1999) incorpo-

rates difference equations, where some of the variables can be binary 0-1. They discuss the

use of Boolean logic, but mostly from the angle of showing that such statements can be rep-

resented as integer inequalities. The system they formally introduce does not allow Boolean

propositions. Their emphasis is on analyzing a system which is theoretically expressive, but

declaring models directly in this framework would still be difficult.

The frameworks coming into most common use are based on a combination of discrete

automata and differential equations. Automata are an elegant method for describing discrete

dynamics, and differential equations are of course the standard for continuous dynamics.

Their combination creates a system more expressive than either alone. Variations, usually

in the generality of continuous dynamics allowed, lead to specific frameworks.

Alur and Dill (1994) introduced timed automata, which allow variables measuring elapsed

time. Within each discrete mode, the differential equations are of the form dx/dt = 1.

Interesting systems can be represented when such equations are combined with discrete

conditions. The variable can have its value reset to 0 when the system transitions to a new

discrete mode. Also, switching out of a mode can be restricted based on the value of this

variable, requiring the system to remain in a certain mode for a specified amount of time.

The timed automata is somewhat the opposite extreme of the efforts of Barton and Pan-

telides (1994). It enriches a discrete dynamical system with a minimal form of continuous

dynamics, while the latter enriches DAEs with a single set of discrete modes.

Cassez and Larsen (2000) consider an extension allowing the derivative of a variable to

be 0 or 1, and call this a stopwatch automaton. Alur et al. (1995) define the linear hybrid

system, which allows the rate of change to be any constant. These seemingly minor variations

can significantly affect some kinds of analysis. For example, the reachability problem for

CHAPTER 1. INTRODUCTION 6

1.3. HYBRID SYSTEMS

linear hybrid systems is undecidable but can be solved for timed automata. Finally, these fall

under the class of systems allowing general continuous dynamics, generically called hybrid

automata. The linear hybrid system in Alur et al. (1995) is actually defined as a restriction

of this more general system. See also Henzinger (1996) and Nicollin et al. (1991).

With respect to theoretical expressivity, the LCCA framework we will define is closest

to the linear hybrid system. However, our aim is to simplify modeling in practice, and we

provide additional features to this end. For example, the discrete modes of two automata

might both represent the use of a single resource. We allow finite domain constraints, which

could be used to disallow the two automata from being in those modes simultaneously.

We also provide modular modeling capabilities by allowing multiple automata. Variable

scoping rules assure that modules’ meanings are independent of each other. Modularity

eases modifications because changes are localized.

Given that a system has been modeled, various questions about that system might be

asked. Chutinan and Krogh (2003) discuss techniques for the verification of hybrid systems,

Barton (1992) began work on simulation of hybrid systems with fairly general continuous

dynamics, reachability for systems with piecewise-constant derivatives is investigated in

Asarin et al. (1995), and stability via a generalization of the Lyapunov method is presented

in DeCarlo et al. (2000). Krogh (2000) provides a brief survey and references for further

investigation.

Possible approaches for the optimization of hybrid systems can be divided into those that

employ MP and those that define algorithms directly on the hybrid system model. There is

relatively little work in both categories.

Asarin and Maler (1999) show how to design an optimal controller for timed automata.

Abdeddaim and Maler (2001) model job-shop scheduling problems with acyclic timed au-

tomata. These have been traditionally modeled in the MP framework, but these works

define optimization methods independent of MP algorithms. As we do, they also make the

case that hybrid automata models allow modeling these problems more naturally than MP.

In Abdeddaim and Maler (2002), they extend their work to preemptive job-shop scheduling,

which require modeling with the richer stopwatch automata.

Algorithms developed directly on timed or stopwatch automata can be efficient because

the structures of these special classes of systems can be exploited. On the other hand,

extensions to the modeling class require new algorithms to be developed. A broader class of

systems can be modeled in the MP framework, and there is an extensive body of literature

and commercial software for optimizing problems posed this way. Bixby (2002) reviews the

impressive advances in this area.

So the second approach to optimizing hybrid systems, the one we take, is to transform

the hybrid systems models into MP models. Usually these are mixed-integer programs, but

Raghunathan and Biegler (2003) show that integer variables can often be eliminated, but

at the expense of introducing nonlinearities.

Stursberg et al. (2002) show how an optimal control problem on their hybrid automata

formulation can be posed as an MP. Our transformation procedure differs firstly because

it operates on the alternative LCCA framework we provide. Additional methods must be

considered to transform the additional features, such as finite domain constraints. Secondly,

CHAPTER 1. INTRODUCTION 7

1.4. MATHEMATICAL PROGRAMS

we focus more on the mechanics of performing the transformation. This makes it more

applicable to models as written in practice, not just canonical forms.

Lee et al. (2004) have also employed MP to optimize hybrid systems. Their focus is

largely on numerical matters. For example, results, such as sensitivity analysis, on purely

continuous systems are complicated by the addition of switching. They show how to compute

sensitivities for hybrid systems, allowing efficient application of gradient based algorithms.

In contrast, we are focused on the transformation as a symbolic procedure, as opposed to

the numerical properties of the resulting formulation.

A somewhat similar distinction exists with the work of Heemels et al. (2001). They

show that several hybrid systems modeling frameworks are equivalent. However, this does

not provide a systematic procedure for translating models in one of those frameworks to

another. Also, they consider only the discrete time case. We provide an exact reformulation

for continuous time models at the expense of restricting continuous dynamics to be piecewise

linear. Torrisi et al. (2000) describe a software implementation for transforming hybrid

systems models into mixed-integer constraints, but this is also for discrete time models.

1.4 Mathematical Programs

Thus far, we have said that we will provide a formal hybrid automata (HA) framework

and a systematic procedure for converting these models into mathematical programming

(MP) models. But what exactly does it mean to have a formal modeling framework and a

systematic procedure? The HA framework we define is formal in the sense that a human

reader (with appropriate mathematical proficiency) of the definition would understand it

unambiguously. Similarly, the transformation procedure is defined formally enough to assure

that a human could know exactly what the steps are.

An improvement would be to make the models comprehensible to a computer and to

automate the transformation. This final step of computer implementation is paid less at-

tention in the literature. In fact, the software challenge needs to be considered carefully

because it requires an even greater degree of mathematical formality. The definitions of the

modeling framework and the transformation must be precise enough to be comprehensible

not just by humans but by a machine. Our demand for computable definitions is fulfilled

on the MP part of our overall goal.

Type theory is the methodology we employ to resolve this software challenge. In fact,

this leads to a more fundamental accomplishment—we provide a logical definition of math-

ematical programs. The software design specification is merely a by-product of this result.

Aside from immediately providing a natural input language, this formulation could also aid

in algorithms development. More information about the problem structure is retained, it is

possible to treat constraints as objects in a precise way, and different kinds of algorithms

can be easily integrated.

In the rest of this section, we review current formulations of mathematical programming

both from a mathematical and software perspective. Emphasis is placed on how our use of

type theory provides alternatives for both.

CHAPTER 1. INTRODUCTION 8

1.4. MATHEMATICAL PROGRAMS

1.4.1 Previous Definitions of Mathematical Programs

A mixed-integer linear program (MILP), according to the standard reference text Nemhauser

and Wolsey (1999, p. 3), is

max
{
cx + hy : Ax + Gy ≤ b, x ∈ Zn

+, y ∈ R
p
+

}
(1.4)

This definition characterizes an MILP by the vectors and matrices c, h, A, G, and b. It is

compact, and methods from numeric mathematics can be readily applied to it. Virtually

all the existing results for MILP were made possible by this definition.

Nonetheless, this matrix form has disadvantages. In the core theory, according to this

definition, there are only inequalities and no equations. This is considered adequate because

the equation x = y can be written as the two inequalities x ≤ y and x ≥ y. However,

rearranging constraints into a canonical form discards valuable information provided by the

modeler. The equation x = y immediately requires these two variables to take on the same

value, as where, depending on the algorithm used, this inference could take longer from

the inequality form. Our formulation will provide several additional mechanisms to retain

knowledge about the problem structure. A critical one is provided by indexed constraints,

which we discuss shortly.

The general issue is that the matrix-based definition only treats the coefficient matrices

c, h, A, G, and b as mathematical constructs. These matrices characterize the objective,

constraints, and overall program, but these items cannot themselves be referred to in a

formal theory. For example, consider a function f applied as f (A,G, b). Formally this

function operates on a numeric space. We interpret the numeric space as characterizing a

constraint space, but that interpretation is external to the theory within which f is defined.

Thus, the definition of f could not take account of things such as the variable names or the

fact that the constraint is an inequality.

Such information is required to define the program transformations we aim for. We need

functions that can be truly applied to constraints, for example as g (Ax + Gy ≤ b), and this

requires defining the constraint spaces that are the domain and codomain of the function.

In the case of MILPs, coefficient matrices could be thought of as characterizing the

program to some extent, although we state this is not sufficient to define program trans-

formations. However, a matrix definition cannot work, even for canonical forms, for other

constraints commonly used in MP. Raman and Grossmann’s (1994) definition of what they

CHAPTER 1. INTRODUCTION 9

1.4. MATHEMATICAL PROGRAMS

call a generalized disjunctive program (GDP) is

min Z =
∑

i

∑

k

cik + f (x)

s.t. g (x) ≤ 0

∨

i∈Dk

[

Yik

hik (x, cik) ≤ 0

]

, k ∈ SD

Ω(Y) = true

x ∈ Rn, c ∈ Rm, Y ∈ {true, false}m
(1.5)

followed by the statement that f , g, and h are nonlinear functions and Ω is a Boolean

proposition. An external understanding of the terms “nonlinear function” and “Boolean

proposition” is assumed.

A complete definition requires stating what class of statements these refer to. Inter-

estingly, it is precisely these two things that cannot be defined with matrices. A matrix

form might be provided for polynomial functions, but not for more general nonlinear forms.

More obviously, Ω is a Boolean proposition. It contains no numbers whatsoever, so certainly

cannot be characterized by a coefficient matrix. Completing the above definition necessarily

requires forgoing the matrix perspective.

Furthermore, in practice it is not sufficient to define only canonical forms. MILP models

cannot be defined by providing the coefficient matrices of (1.4). A more natural syntax

is required, of which the most important feature is indexing. Of course, the above defini-

tions were never meant to provide a syntax. It is considered obvious that for example the

constraint

xi = xi−1 + yi ∀i ∈ {1, . . . , N} (1.6)

can be rearranged into the form required by (1.4). A significant flaw lies in this reasoning.

Such a rearrangement is a function and defining it first requires that we define its domain,

which is this more natural syntax. In other words, the need to provide a formal definition

of indexed constraints has not been avoided.

This seemingly innocuous feature introduces several challenges. Exactly what kind of

construct is {1, . . . , N}? Allowing modelers to employ such an index set implies that we

have defined the set of all index sets. In practice, rather sophisticated sets are needed. For

example, we might want to write the quantifiers ∀i ∈ I,∀j ∈ Ji. Here, the second set Ji

depends on the value of i, and J by itself is a function which, when applied to i, returns an

index set. Also, index variables i and j are distinct from the MP variables x and y. The

two can be used to create a composite term such as xi. This evaluates to a real number, but

what is x by itself? It seems to be a function; it evaluates to a real number when applied

to i. Already, we see that MP constraints as written in practice employ mathematical

constructs—index sets, functions returning index sets, universal quantifiers, and function

variables—not supported by the current definitions.

Perhaps our discussion is making things unnecessarily complicated. The prevailing view

CHAPTER 1. INTRODUCTION 10

1.4. MATHEMATICAL PROGRAMS

is that indexing has to do with nothing more than a simple substitution procedure. In con-

straint (1.6), we could simply substitute in each value of i to create N unindexed constraints.

This is firstly inefficient because it increases the program size dramatically. It also discards

knowledge provided by the modeler. Now, there are simply N unrelated constraints, but

the indexed constraint states that there are N constraints of an identical form.

Secondly, this does not avoid most of the issues. Indices are still present after substi-

tution. Constraint (1.6) for i = 1 becomes x1 = x1−1 + p1. Now, x1 can be treated as a

single symbol, a name for one variable, but how about x1−1? Clearly, this is supposed to

be reduced to x0, but we have just evaluated 1− 1 to 0. So handling indices requires doing

mathematics, but it is not clear what system of mathematics this is. It is not plain integer

arithmetic. If x is supposed to be indexed by the set {1, . . . , N} or {A,B,C}, then 1 − 1

should not evaluate to 0. It should be recognized as an erroneous statement.

In summary, the current matrix based definitions of mathematical programs have several

drawbacks. Their numerical focus does not allow treating constraints and whole programs as

mathematical objects, which is required to automate program transformations. They pro-

vide only canonical forms, which does not allow modeling in practice nor retaining knowledge

provided by the modeler. It is difficult or impossible to extend these definitions to nonlinear

programs or additional data types such as Boolean.

Some of these concerns, especially the need for a more natural syntax, have been ad-

dressed by previous works. Their goal has been to provide computer languages serving as

interfaces to the matrix definition of an MP. We review these in the next section but argue

that all lack a formal specification, limiting the features and trustworthiness of their soft-

ware. Following that, we explain how a more formal approach to language design is possible.

This simultaneously produces better software and provides an alternative to matrix-based

definitions.

1.4.2 Previous Mathematical Programming Languages

The book by Kallrath (2004) provides a comprehensive overview of modeling languages for

mathematical programming. Most of the ones we discuss are parts of commercial products

with a wide breadth of features, but our focus is only on the modeling language. The

language we will provide has several features not available in any of these, but also the

previous languages have features not available in ours. The main distinction is that our

software results from a mathematical theory. This provides trustworthy software because

properties about its execution behavior can be proven.

One of the earliest languages is GAMS by Bisschop and Meeraus (1982). These au-

thors clearly made the case that modeling is a significant challenge and addressed many

fundamental concerns. This language is still widely used, attesting to their far reaching

vision. For its time, GAMS introduced many elegant features, most notably the use of

index sets. Modern demands are being addressed by more recent languages such as AMPL

(Fourer et al., 1990) and Mosel (Colombani and Heipcke, 2002). However, although these

are the standard references, none defines the syntax of the language being introduced. Their

explanations are only through examples.

Syntax definitions that are available are presented for end users, e.g. in the manuals

CHAPTER 1. INTRODUCTION 11

1.4. MATHEMATICAL PROGRAMS

for GAMS (Brooke et al., 1998), AMPL (Fourer et al., 2003), and OPL (van Hentenryck

and Lustig, 1999). Also, Bisschop and Meeraus (1979) provides a syntax for GAMS, but it

is included without any discussion in the body of the work. Overall, little effort has been

made to provide formal definitions for MP languages.

In the few cases where the syntax is defined, it is of the concrete syntax, which is

concerned literally with the characters that can be typed into an input file. Actually, it is

known in the programming languages literature (Pierce, 2002, p. 53) that a better focus is

on the abstract syntax, which is concerned with the essential features of a language.

For example, we declare e1 + e2 to be an expression, given that e1 and e2 are. The

important point here is not that the + symbol comes in between the two expressions, but

rather that there is such a thing as addition and that addition involves two other expressions.

We might have notated it as plus (e1, e2), which is an identical definition from the perspective

of abstract syntax. Another example is
∑

i∈S e. This is declared to be an expression given

that i is an identifier, S is an index set, and e is itself an expression. In the concrete syntax,

we in fact resort to ASCII text. The
∑

symbol is written SUM and the i ∈ S cannot be

subscripted. These are relatively trivial matters compared to the abstract declaration: there

is such a thing as indexed summation.

Concrete syntax is burdened with details that are not essential to a language’s definition.

This complicates the theory without benefits. The GAMS syntax provided in Bisschop and

Meeraus (1979) requires thirty-four syntactic categories, and that was apparently for a

simplified version of the language. In contrast, the theory we will provide requires fewer

than ten, and produces a language with significantly more advanced features. Of course,

eventually we do have to provide a concrete syntax, but this is relatively trivial to do given

the abstract syntax. The concrete syntax of our language is discussed in Appendix C.

In all but the simplest languages, syntactical definitions (concrete or abstract) will in-

clude nonsensical terms, such as 2 + true. All software look for such errors in some way.

Fourer and Gay (2002) acknowledge this need. They define a syntax for constraints which

itself involves expressions, and say that any expression used must be a “valid expression”

(p. 332). However, neither they nor any of the works we have referenced provide a method

for determining the valid expressions.

We can only surmise that developers have implemented some ad hoc procedures for

validating syntax. What is actually needed is an exposition of the language’s type system.

The types of the language must be declared and terms of the language categorized into those

types. A language definition cannot be considered complete without knowledge of its type

system. Without one, we do not know its admissible syntax nor the nature of the objects

that comprise it. With one, we have a precise definition of the set of programs.

Various operations are of importance on such a set. We explained above that program

transformations are not supported by the theory of MP, but given their importance, several

software have attempted to implement them. Unfortunately, the results are often erroneous

due to the lack of a supporting theory.

OPL, a leading MP software, for example allows expressing the disjunctive constraint

(
x1 + x2 ≤ 9 × 105

)
∨
(
x1 + x2 ≥ 106

)
(1.7)

CHAPTER 1. INTRODUCTION 12

1.4. MATHEMATICAL PROGRAMS

where x1, x2 ∈ R, and no bounds on x1 nor x2 are provided. It erroneously transforms this

into the MILP constraints

x1 + x2 + 105y ≤ 106 (1.8a)

x1 + x2 +
(
2 × 106

)
y ≥ 106 (1.8b)

where y ∈ {0, 1}. The exact OPL input and output files are given on page 207. By setting

y = 0 and y = 1, it is easy to see that these constraints do not represent the same region

as the disjunctive constraint, not even approximately. The reason is a bound is assumed

when not provided. Had smaller constants been chosen, the transformation would still be

incorrect but the error smaller. LogMIP makes a similar error in the example provided on

page 208. It converts an unbounded optimization problem into a bounded one.

These could be attributed to minor programming errors, but we believe the issue is more

significant. The literature lacks a clear explanation of what variable bounds are and how

this information can be used to test whether certain transformations are applicable to a

given constraint. Our work fills in this gap, and our software clearly informs a user that

bounds must be provided prior to converting the above disjunctive constraint.

Aside from lacking a type system and errors in program transformations, there is also

little attention paid to more elementary, but crucial, operations. As an example, we discuss

the issue of variable capture.

Vecchietti and Grossmann (2000) describe a procedure for putting constraints into con-

junctive normal form (CNF) in preparation for the transformations they implement in Log-

MIP. Equation (9) of their work is

(
∨

i∈I

gi

)

∨




∧

j∈J

fj



 (1.9)

where gi and fj are constraints2 indexed by i and j, respectively. They then state that this

can be converted into3

∧

j∈J

(
∨

i∈I

gi ∨ fj

)

(1.10)

By subscripting g and f , it is implied that these are the only subscripts involved in the

constraint, and the above conversion is correct in this case.

However, the subscripting restrictions are excessive. In practice, it would be reasonable

for g to also involve the subscript j. Unfortunately, the above transformation is then not

applicable. The j in g would be unrelated to the j in f because the latter is locally scoped,

but the transformation would result in both j’s coinciding. This problem is called variable

capture because the j in g has erroneously become captured in the wrong scope.

Such an error probably does not occur in the LogMIP software because it is an extension

of GAMS, and, in GAMS, index variables can only be introduced in a way that makes them

globally visible. But this means the conversion above is defined on a syntax different from the

2We have slightly simplified the notation from their original.
3We have corrected a typographical error. The I and J are mistakenly accented in their publication.

CHAPTER 1. INTRODUCTION 13

1.5. TYPE THEORY

one actually implemented because the indexed operators above do provide local scoping. We

cannot thus be confident of what the implemented transformation is and whether it handles

critical details such as variable capture.

The above discussion makes clear that existing MP modeling languages lack a formal

foundation. Often, even the syntax for a language is not provided. When it is, it is always

the relatively unimportant concrete syntax. Never has an MP language’s type system been

defined in the literature. It is easy to find examples of program transformations giving

incorrect answers. Other operations are either not defined at all or are discussed by example

only. The examples are often stated for a syntax different than the one the operations are

implemented for.

On the other hand, most of the languages mentioned are successful commercial products.

Our work can be viewed as supporting these efforts by providing a theory for developing

such software. This is firstly necessary because the informal design methods currently

in use are unable to provide the more advanced features being continuously demanded.

Furthermore, formally defined software can be analyzed. We can prove that our software

correctly performs the computations we claim it to.

We will provide a formal theory for a mathematical programming language. The syntax

will be defined precisely, and its type system declared. We will then go one step further;

a semantic interpretation of the syntax is provided. But a formal syntax and semantics

provides a mathematical system which can be understood in its own right. In other words,

designing a computer language, when defined rigorously, is equivalent to inventing a mathe-

matical system4. Our definition of a language will provide not only a theoretical foundation

for the efforts of software developers but also serve as an alternative to current matrix-based

definitions of MP. This close connection between computation and mathematics is espoused

by type theory, the theory employed to provide our language’s definition.

1.5 Type Theory

The distinction between a language easy to use in practice and the formal definition of a

mathematical program—sometimes called the modeler’s and algorithm’s form—is eliminated

by providing a formal definition of an elegant language. Henceforth, language design is

to be understood as equivalent to invention of a novel mathematical system, not merely

specification of a computer file format. To avoid confusion, we will often say we are defining

a logic. A logic, used as a noun, is a mathematical system with a well defined syntax and

semantics.

Several methodologies for inventing logics exist. Mathematical logic is the general disci-

pline of concern and can be thought of as a discipline for studying reasoning in a formal way

(Curry, 1963, p. 2). Specific systems for carrying out such a formalization include propo-

sitional and predicate logic, also called zeroth- and first-order logic, respectively. These

systems can be studied abstractly but are instantiated to provide specific theories. For in-

stance, ∃x �A∨B, read “there exists x such that A or B is true”, is a statement in first-order

4However, the popular programming languages, such as C/C++, Java, and Fortran, do not adhere to
this standard. Amongst widely used languages, ML, the language in which this work is implemented, comes
closest. Its definition is provided in Harper, Milner and Tofte (1989).

CHAPTER 1. INTRODUCTION 14

1.5. TYPE THEORY

logic. A specific first-order logic is obtained if we let x range over the reals, and let A and

B be equations. In that case, the statement is a constraint in a disjunctive program (the

existential quantifier is not written in current practice, but it is implicitly present).

Approaches along this line have been taken to define languages for constraint program-

ming (CP), a discipline increasingly associated with mathematical programming (MP). For

example, the constraint logic programming scheme of Jaffar and Lassez (1987) provides

a system which can be instantiated with a specific domain of discourse. Saraswat (1989)

extended this into a class of languages for concurrent constraint programming. CP has its

roots in logic, and a more formal approach to language design is clearly evident in these

works as compared to MP languages. As a result, they are able to treat constraints as

objects, a critical need for CP algorithms. We too wish to treat constraints as objects for

the purpose of formalizing program transformations. Both areas require this to legitimately

claim a language definition.

Richer logics can be invented with axiomatic set theory. Axiomatic set theory is very

powerful because it allows defining constructs of a very general nature, but this is not

necessarily an advantage. Famously, Frege’s (1893) original formulation of set theory turned

out to be inconsistent. Roughly, this was because sets could be too large; they could contain

themselves leading to a “vicious circularity”. Certain restrictions to the axioms of set theory

do provide a consistent theory. However, Bertrand Russell circumvented the problem by

another strategy. In Russell (1903), he explains how requiring set definitions to be stratified

avoids the circularity causing trouble in naive set theory. This is called type theory, and is the

subject of Whitehead and Russell’s (1910) extraordinarily influential Principia Mathematica.

Type theory restricts the contents of sets by distinguishing between different types of

objects (e.g. numbers, functions from numbers to numbers, sets of numbers). The set of

natural numbers for instance could not contain itself because it can only contain numbers,

not sets. Categorizing objects in this way is a very natural restriction that coincides with

the nature of human thought, both in everyday life and in mathematics. Even prior to the

development of type theory, mathematicians kept in mind that there are different types of

objects. A function applied to a number would not be applied to a set because numbers

and sets are different types of things. Type theory makes this categorization explicit and

demands it.

Type theory is a higher-order logic much more powerful than first-order logic. Strictly,

axiomatic set theory is even more powerful. That is important for certain studies, but type

theory is often preferred for its elegance. According to Andrews (2002)—which provides an

excellent introduction to mathematical logic—it is “an accident of intellectual history that

at present most logicians and mathematicians are more familiar with axiomatic set theory

than with type theory” (p. xii).

Several improved versions of type theory have been presented since Russell’s original

formulation. Stratifying set definitions to categorize objects into their types is always the

basic theme. The theory of mathematical programming we provide incorporates this tech-

nique to define a language with richer data types. The definition of MILPs given in (1.4)

acknowledges only the real and integer data types. MP languages however speak of indexed

variables. It is said that xi is a real variable, but we must also understand what x is by

CHAPTER 1. INTRODUCTION 15

1.6. PROGRAMMING LANGUAGES

itself. We formalize such a variable by defining it to be of function type, a mapping from an

index set to the reals. An enriched type system is the essence of a more elegant language.

The MP language will rely on a separately defined indexing language. From the per-

spective of language design, indexing is far more complex than mathematical programming.

MP types are fixed objects—the elements of the real, integer, and Boolean types are set.

The indexing language requires dependent types. For example, the type [1, i] represents the

integers from 1 through i. In contrast to the MP types, the elements of [1, i] depend on the

value of a variable.

The indexing language is an instantiation (of most) of a particular type theory called

intuitionistic type theory, invented by Martin-Löf (1984). Amongst other things, intuition-

istic type theory enriched previous versions of type theory by introducing dependent types.

Dependent function types allow the codomain of a function to depend on the particular

argument the function is applied to. For example, a function f could be defined such that

f (1) returns a value in the set {A,B,C}, but f (2) returns a value in {D,E}. Product

types are similarly generalized. The type I ×J , which contains pairs (i, j), could be defined

such that the allowed value of j depends on what i is. Often, our conceptualization of a

system incorporates exactly such types, as some examples will demonstrate. Indeed, depen-

dent types are commonly used in models defined on paper, where imprecise mathematical

notation is accepted. Our dependent type theory makes such models comprehensible to a

computer.

The indexing language is an especially interesting application of dependent type theory.

It is a rare example of a useful language that contains only finitary types. Most languages

require infinite types such as real and integer. However, it is the very essence of an index set

that it contain a finite number of elements. As a result it is possible to define an ontological

type checker. This defines a construct to be well formed precisely when the meaning of

that construct can be understood. This is in stark contrast to the syntactically driven type

checker of the MP language. This is the usual kind and type checking is prior to semantics.

Further discussion on this matter is provided at the beginning of Chapter 6.

As the name suggests, intuitionistic type theory follows the program of intuitionism

instigated in the mathematician Brouwer’s (1907) thesis. Intuitionism is a form of con-

structivism. Dummett (1977) provides an authoritative account of intuitionism, and the

first chapter of Troelstra and van Dalen (1988) provides an overview of constructivism in

general. There is significant debate between followers of this view of mathematics and the

classical or platonic view. Moderates accept that both views can coexist. Our work at-

tempts only to reflect the current practice of mathematical programming. Clearly, infinite

objects, i.e. the reals, are currently treated classically, but interestingly, existing algorithms

seem to take a constructive view of solving an MP. We expand on this after explaining how

solving an MP corresponds to executing a program.

1.6 Programming Languages

The constructivist approach is especially relevant for providing computational theories of

mathematics. Thus, it is particularly important for the design of programming languages,

CHAPTER 1. INTRODUCTION 16

1.6. PROGRAMMING LANGUAGES

which are meant to be executed on a computer. Thus far, we have spoken of MP as a

modeling language and as a logic. Ultimately, we would like to view it also as a programming

language. Designing programming languages has been one of the primary applications of

type theory. See for example Pierce (2002), Harper (2005), and Harper et al. (1989).

Treating mathematical programs as computer programs appears to be in direct opposi-

tion to the prevailing view. The word “programming” in mathematical programming results

from its original use in linear programming (LP). LPs were originally used to optimize lo-

gistics schedules, which were called programs. That the word programming in this context

is unrelated to computer programming is an often mentioned point. We do not mean to

contradict this distinction. Our explanation of MP as a programming language is unrelated

to the occurrence of the word programming in mathematical programming.

MPs have not been considered programming languages also because constraints are

thought of as declarative statements while programming languages as procedural. This

view is manifested in current software designs, e.g. OPL provides a modeling language for

declaring an MP and a separate scripting language for specifying algorithms to solve it. This

dichotomy is somewhat obviated by the functional programming paradigm, which has its

roots in the λ-calculus (Barendregt, 1984). The language Mosel (Colombani and Heipcke,

2002) purportedly follows this view and correspondingly allows intermixing model and solve

statements.

We explicate the relationship further. It is possible to view a declarative statement as

a programming language statement that must be executed. This clarifies the intention of

the so-called procedural aspects of current MP software. They are statements in the overall

language directing the execution of the mathematical programming sub-language.

Executing a mathematical program means solving the optimization problem it expresses.

We define the meaning of solving an MP in a logical manner; a semantic interpretation of

the syntax of an MP is provided. For example, after stating that x = y +1.0 is a constraint,

we will state what it means for the constraint to be true or false. Following the constructive

view, truth is understood through proof. It is only when we have defined what a proof of

truth is that we understand what it means for a constraint to be true.

Our treatment of semantics is less formal than of syntax. The required proofs are

explained only conceptually (we do not provide a language of proof terms). This will be

sufficient to gain some interesting insights. We will see that current algorithms often take

a constructive view of proof. This is most evident for disjunctive constraints A ∨ B, one of

the main points of contention between classicists and constructivists. Constructively, the

constraint A ∨B is considered to be satisfied only when we can prove that either A or B is

true. Classical mathematics accepts proof by contradiction, which could allow concluding

A ∨ B to be true without in fact knowing either that A is true or that B is true. All MP

algorithms we know of interpret disjunction constructively.

Making this point explicit clarifies what the output of MP software should be. Solution

reporting is currently treated in completely ad hoc manners. In fact, what the user is

seeking is a proof of why their particular mathematical program has the solution it does.

The output should state not only what the optimal solution is, but why it is so. This is

precisely the constructive view of mathematics. Our definition of the semantics of an MP

CHAPTER 1. INTRODUCTION 17

1.7. DISSERTATION OVERVIEW

is a first step towards formalizing the algorithmic aspects of MP.

Note however that we will not provide an executable MP language. Firstly, this is

because solving an MP is the purview of virtually all the rest of the MP literature. Our goal

is only to fit that work into a logical formulation of MP. Secondly, doing so would require us

to address the issue of computation on the reals, which is well beyond the scope of this work.

Even in future, the best we can hope to do is imagine executing a mathematical program

approximately, in such a way that it gives a solution reliably close to the true solution.

1.7 Dissertation Overview

Hybrid Systems

• Chapter 2 defines our LCCA modeling framework. We show that systems with mixed

discrete-continuous dynamics can be elegantly modeled in this framework.

• Chapter 3 presents a method for transforming LCCA models to mathematical pro-

grams, thereby enabling the application of existing algorithms to our novel modeling

framework.

Logical Mathematical Programs

• Chapter 4 provides a type theoretic (logical) formulation of mathematical programs.

An introduction to the basic concepts of type theory is provided.

• Chapter 5 defines the subset of MP that we consider to be MIP. Then, a compiler

from MP to MIP is defined. Not all MPs can be expressed as an equivalent MIP. We

present a sufficient, but not necessary, precondition that the compiler must satisfy.

Indexed Mathematical Programs

• Chapter 6 defines a language for declaring complex index sets in an intuitive manner.

This is a logic of finitary types, separate from the MP language.

• Chapter 7 combines this indexing language with the unindexed MP language to define

a logic of indexed programs.

• Chapter 8 defines a compiler on indexed programs, analogous to that of Chapter 5.

Chapters 7 and 8 subsume the theories of Chapters 4 and 5, respectively. They ex-

tend the former theories with indexing. There is thus some repetition in the definitions

but the discussion differs. The former chapters emphasize how type theory can provide a

novel formulation of mathematical programs and how this allows automating tasks currently

performed manually. The latter focus on the additional theory required due to indexing.

An incremental presentation was considered necessary because indexing complicates the

theory extensively. It is by far the greatest challenge addressed in this work. Chapters 4

and 5 are intended for an audience unfamiliar with type theory, while Chapters 7 and 8

assume prior experience in the area.

CHAPTER 1. INTRODUCTION 18

1.7. DISSERTATION OVERVIEW

Closing Chapters

• Chapter 9 presents an application tying together the results of the dissertation.

• Chapter 10 concludes with an assessment of our contributions and some ideas for

future work.

Appendices

• Appendix A reviews basic concepts from mathematical programming, especially the

various methods for transforming constraints.

• Appendix B presents a meta-logic with built-in support for variable scoping structure.

This saves us the trouble of defining numerous operations related to variables.

• Appendix C discusses the concrete syntax of our language. The chapters present all

theory with respect to the abstract syntax, but examples show our software’s actual

input and output, which is in concrete syntax.

• Appendix D includes data and input and output files referenced in the main body.

Finally, a summary of notation is provided beginning on page 214 and a list of acronyms

on page 220.

CHAPTER 1. INTRODUCTION 19

Chapter 2

Modeling Hybrid Systems

Many processes in the chemical industry exhibit mixed discrete-continuous dynamics, called

hybrid dynamics. An example is shown in Figure 2.1, which depicts a tank with two inlet

streams and one outlet. The inlets are each governed by a hybrid process. Process α depicts

a pump which can be in one of two discrete modes: on or off. Similarly, process β can be

pumping at either a high or low setting.

on
off

α

hi
low

β

Figure 2.1: Schematic of switched flow process.

In a large system, e.g. a full chemical plant, it would be necessary to break down the

modeling task into smaller pieces. The sub-model defining process α should be unaffected

by changes to the sub-model for process β. The two processes are coupled however, through

their mutual contribution to the material level in the tank. A modeling framework should

require this coupling to be expressed in a way that maintains a separation between the

sub-models.

The linear coupled component automata (LCCA) framework we introduce does this.

Each linear automaton represents a single hybrid process. Certain variables, e.g. the flow

input by process α, are local to each automaton, meaning they cannot be used in any other

part of the model. Other variables, e.g. the material level in the tank, are global, meaning

they are visible to all processes. However, there are restrictions on how the global variables

can be employed. In particular, a component automaton cannot directly specify the value

of a global variable; it can only specify its own contribution to that value.

In the presence of hybrid dynamics, modularity introduces a complication relating to the

20

2.1. PRELIMINARIES

timing of discrete events. Discrete events can occur only at certain points in the timeline,

called event points. However, naturally, at an event point, not all automata should have to

make a discrete transition. Thus, time must be able to progress through an event point in

such a way that a discrete event is in fact not required. This matter is resolved with what

we call a dummy transition.

The LCCA framework we define follows the style of much recent work in the area of

hybrid systems, reviewed in the Introduction chapter. In terms of theoretical expressivity,

it is similar to the linear hybrid automata of Alur et al. (1995). In the next chapter we will

show that in fact systems expressed in LCCA can be expressed as a mixed-integer linear

program (MILP). Our aim thus is not to provide a framework more expressive in theory.

Rather it is to facilitate modeling in practice.

2.1 Preliminaries

The LCCA framework makes use of a hybrid timeline and various constraint forms. We

define these in the current section.

2.1.1 Hybrid Timeline

For continuous systems, the timeline is simply an interval of the real numbers, but a different

model of time is needed for hybrid systems. Discrete dynamics occur instantaneously and

the timeline must allow specification of two values at certain time points, called event points.

Let N = {1, . . . , n} for some constant n. Lygeros et al. (1999) define a hybrid timeline1,

depicted in Figure 2.2, as an ordered sequence of intervals T = {[tsi , t
e
i]}i∈N

such that

• tsi ≤ tei for i ∈ N, and

• tei = tsi+1 for i ∈ N\ {n}.

The interpretation is that all discrete variables are constant during each interval. Only

continuous variables evolve within intervals. Discrete variables change their values at the

boundaries between intervals, the event points. Let ∆ti = tei − tsi denote the length of

interval i.

event:

interval:

ts1

1

te1

1

ts2

2

te2

2

ts3

3

te3

3

ts4

4

te4

4

ts5

5

te5

5

ts6

6

te6

6

ts7

. . . n

Figure 2.2: Hybrid timeline.

Despite this alternative timeline for hybrid systems, the definition of dynamic variables

in the existing literature (e.g. Aubin et al., 2002) has followed that of purely continuous sys-

tems, i.e. a dynamic variable is defined on the domain R. This complicates the mathematics

1We have restricted their definition to the n < ∞ case.

CHAPTER 2. MODELING HYBRID SYSTEMS 21

2.1. PRELIMINARIES

because a variable can take two values at the event points, requiring them to be treated as

more general mappings than functions. However, a functional form can be maintained if

the above timeline definition is slightly rearranged. We define the hybrid timeline

T = {(i, t) : t ∈ [tsi , t
e
i] ∈ T } .

With this definition, a single time point is a pair (i, t). We strictly maintain this interpre-

tation; any reference to t by itself is considered incomplete.

There is a total order relation � on T, as expected of a timeline. The time point (i, t)

precedes or is equal to (i′, t′), denoted (i, t) � (i′, t′), if and only if i ≤ i′ and t ≤ t′. If

(i, t) 6� (i′, t′) , then it must be that (i′, t′) � (i, t). If both (i, t) � (i′, t′) and (i′, t′) � (i, t),

then (i, t) = (i′, t′).

The set N\ {n} = {1, 2, . . . , n − 1} can be interpreted as the set of event points. Our

convention is that the ith event point occurs at the end of interval i. Event point i coincides

with two time points: (i, tei) and
(
i + 1, tsi+1

)
. Only the integer component of time changes

when an event occurs. The real component at both times is t = tei = tsi+1.

Events are said to occur instantaneously, but this is only with respect to the real compo-

nent of time. The integer component of time does progress. The concept of instantaneous

has been captured by a finite time change in our definition. Precisely, an event occurs over

zero units of real time and one unit of integer time. As a consequence, events do not occur

at the initial (1, ts1) and final (n, ten) time points.

Time is usually considered continuous or discrete, but additional possibilities exist in

a hybrid timeline. The formulation provided is a continuous timeline with event points.

If n = 1, then we have a continuous time formulation without events, which is the usual

model of time. If n > 1 and interval lengths are fixed, the system restricts the timing

of event points. However, there could still be continuous evolution within an interval.

Finally, time could be discretized within each interval, whether or not interval lengths are

fixed, to accommodate the numerical solution of differential equations. Discretization will

however not affect us because we consider only differential equations simple enough to be

symbolically integrated. In summary, a hybrid timeline can be discrete or continuous and

can either restrict event times to fixed points or not.

2.1.2 Constraints

Constraints on real and discrete variables will be needed in the overall modeling framework.

Here, we discuss the meaning of continuous and discrete dynamic variables and define some

notation needed subsequently.

A real valued dynamic variable is a function from the timeline to the reals, X : T → R.

Our modeling framework allows use of equations and inequalities: =, ≤, and ≥. Strict

inequalities are not allowed because they are also not allowed in MIPs, to which we wish to

convert our models.

Continuous variables change infinitesimally in an infinitesimal amount of time, but their

values can also jump instantaneously at an event point. Consider an event occurring from

time (i, t) to (i + 1, t). The instantaneous change can be defined by an algebraic equation,

CHAPTER 2. MODELING HYBRID SYSTEMS 22

2.1. PRELIMINARIES

e.g. X (i + 1, t) = X (i, t) + 1 would increment the value of X by 1 at event i.

In purely continuous systems, it is customary to refer to “a set of constraints”. Really,

what is meant by this is a conjunction of constraints. For example,

X (i + 1, t) = X (i, t) + 1 ∧

Y (i, t) = X (i, t)

is usually considered two constraints and the conjunction symbol ∧ is not shown. We often

call this a single constraint (which happens to be a conjunction of two other constraints).

Discrete variables come in various forms. MIP allows integer variables, and GDP includes

Boolean logic. We consider variables taking values from a finite set, e.g. Q = {A, B, C}, which

are often called set valued or finite domain variables. A, B, and C are finite domain constants,

just as 1, 2, and 3 are integer constants.

Given a finite set Q, we can now define a dynamic finite domain variable Q : T → Q.

However, by definition, discrete variables do not evolve within an interval. The value of

Q (i, t) depends only on the interval number i, making the t superfluous. It suffices to define

dynamic discrete variables as functions on the set of intervals, Q : N → Q. Equations can be

used to restrict the values taken by Q over time, e.g. Q (2) = B sets Q in the second interval

to the value B. Also, the values between intervals can be related, e.g. Q (i) = Q (i + 1)

forces Q’s value to remain unchanged from interval i to i + 1.

Of course, multiple discrete variables might be needed. Superscripts are used to refer

to different finite sets, e.g. Qα = {A, B, C} and Qβ = {D, E}. The corresponding dynamic

variables are named with the same superscript. So Qα is understood to be a function from

N → Qα. The equation Qα (i) = D would be erroneous.

Constraints on reals can only be connected by conjunction, but equations on finite do-

main variables can be connected with the logical operators negation ¬, disjunction ∨, and

conjunction ∧. For example, perhaps Qα taking the value B requires the use of some resource,

and that same resource is required if Qβ is equal to D. The constraint

¬
(
(Qα (i) = B) ∧

(
Qβ (i) = D

))

assures that these values are not taken at the same time. Another example is

(Qα (i) = B) ∨ (Qα (i) = C)

which requires Qα to take either the value B or C in interval i.

The modeling framework defined in the next section allows constraints in the above

forms but requires various restrictions on which variables can be used and the time points

at which the variables can be evaluated. Some notation will allow stating these restrictions

compactly. Let L denote the set of all constraints in the forms discussed above, and let X

be a set of dynamic real variables and Q a set of dynamic finite domain variables. Also, let

X (i, t) and Q (i) mean each of the variables in the sets are evaluated at time point (i, t).

Finally, L (X (i, t)) is the set of constraints involving only variables in X evaluated at time

(i, t), and similarly for L (Q (i)).

CHAPTER 2. MODELING HYBRID SYSTEMS 23

2.2. LINEAR COUPLED COMPONENT AUTOMATA

The following font conventions have been used:

• plain font represents a single variable, e.g. i, t, X, Q

• bold font represents a set of variables, e.g. X, Q

• blackboard bold font represents a space of values, e.g. N, R, T, Q

• calligraphic font represents more complex mathematical objects, e.g. L.

2.2 Linear Coupled Component Automata

With these preliminary concepts in place, we can now define the LCCA framework. Con-

ceptually, the system consists of a set of component automata, so called because they are

components of an overall system. Each automaton has a set of discrete modes associated

with it, and a dynamic finite domain variable specifies the mode the automaton is in over

time. There are overall real valued system variables, and each automaton specifies its contri-

bution to how these variables evolve. Automata cannot directly specify the rate of change

of a system variable, but the values of system variables can prohibit or require discrete

transitions in the automata. These are natural restrictions that support modular modeling.

A dynamical system consists of a timeline, variables, and a specification of how these

variables evolve. Precisely, we define a linear coupled component automata model as the

5-tuple

(n,Gt,X, Aut,GV) (LCCA)

where n is an integer, Gt is a constraint on the timeline variables, X is a set of dynamic

real variables, Aut is a set of component automata, and GV is a constraint coupling the

component automata.

The integer n specifies the number of intervals in the timeline. Given n we take the

timeline to be T = {[tsi , t
e
i]}i∈N

, where N = {1, . . . , n}. We can also refer to the timeline in

the form T, which is defined in terms of T in section 2.1.1. Let t = ∪i∈N {tsi , t
e
i} be the set

of timeline variables.

Gt is an element of L (t), allowing constraints on the timeline variables. For example,

interval lengths could be fixed to a constant by requiring tei−tsi = k for all i. For optimization

purposes, an upper bound on the time horizon will be required. This can be given by the

constraint ten ≤ Tmax.

Each automaton a ∈ Aut is itself a 5-tuple of the form

(Q, x̄, x̂, F,Arc) (component automaton)

where:

• Q gives the discrete modes of the automaton, and we let Q : N → Q give the discrete

mode in each interval.

• x̄ is a set of given rates, the values of which can vary by mode. Each x̄ ∈ x̄ is a function

from Q → R. These will be used in differential equations governing the continuous

evolution of X.

CHAPTER 2. MODELING HYBRID SYSTEMS 24

2.2. LINEAR COUPLED COMPONENT AUTOMATA

• x̂ is a set of jump variables, whose values are dependent on the event number. Each

x̂ ∈ x̂ is a function from N\ {n} → R. These will be used in algebraic equations

governing the discrete evolution of X.

• F : Q → L (X (i, t)) is an invariant, a constraint that must be satisfied during contin-

uous evolution. The constraint can depend on the mode of the automaton. Formally,

the condition is enforced as F (Q (i)) for all (i, t) ∈ T. At time (i, t), the automaton’s

mode is Q (i). Thus, F (Q (i)) gives the desired constraint for the active mode.

• Arc ⊆ Q × Q is a set of transitions. Associated with each transition (q, q′) ∈ Arc is a

guard γ(q,q′) ∈ L (X (i, t)) and a reset ρ(q,q′) ∈ L (X (i, t) ∪ x̂ (i)). The transition can

be made at event point i only if the guard holds at time (i, t), and, if the transition is

made, the reset is also enforced. There exists at most one transition from any q to q′.

It is required that a dummy transition (q, q) exists from every q ∈ Q to itself. On

this transition, the guard γ(q,q) is set to a trivially satisfied constraint such as 1 = 1,

and the reset ρ(q,q) is ∧x̂∈x̂ (x̂ (i) = 0). Dummy transitions are required because the

mathematical model forces all automata to transition at an event point, but this is

a superficial physical requirement. The dummy transition enables an automaton to

progress through an event point in a manner that has no effect.

In the above, an automaton has been generically denoted by the tuple (Q, x̄, x̂, F,Arc).

Superscripts are used to refer to multiple automata, e.g. automaton a consists of the ele-

ments (Qa, x̄a, x̂a, F a, Arca). The discrete variable associated with this automaton is Qa.

Let Q = ∪a∈AutQ
a be the set of discrete variables in an LCCA model, just as X is the set

of continuous variables.

Variables x̄α and x̂α are local to automaton α. Another automaton β cannot make

any reference to these variables, only to its own x̄β and x̂β . Separating the variable name

space requires modeling to be done in a modular fashion. In contrast to existing hybrid

automata modeling frameworks, differential equations are not associated with the discrete

modes of our component automata. They specify only rates x̄. Similarly, resets do not

specify discontinuous evolution; they dictate only the values of x̂. Component automata are

so named because they do not represent a dynamical system on their own; they are useful

only as components of the overall LCCA system.

The last element of the modeling framework is GV . This is where the dynamical equa-

tions are specified. All local and system variables can be used. GV can include several types

of constraints:

• differential equations of the form

dX (i, t)

dt
=
∑

a∈Aut

x̄a (Qa (i)) + k ∀ (i, t) ∈ T (2.1)

where k is some constant. Thus, the overall rate of change of X is potentially depen-

dent on the active modes of all automata,

CHAPTER 2. MODELING HYBRID SYSTEMS 25

2.3. HYBRID TRAJECTORIES

• discontinuity equations of the form

X
(
i + 1, tsi+1

)
= X (i, tei) +

∑

a∈Aut

x̂a (i) + k ∀i ∈ N\ {n} (2.2)

where k is some constant. Discontinuity equations are the discrete analog of differential

equations. A flow rate x̄ specifies an infinitesimal change in an infinitesimal amount

of time. Similarly, a jump variable x̂ specifies a finite change over an instantaneous

step in time, i.e. over an event occurring from time (i, tei) to
(
i + 1, tsi+1

)
,

• finite domain constraints in L (Q (i)) or real constraints in L (X (i, t)). These are

constraints that must always hold, independent of the active mode of automata, and

• initial conditions from L (Q (i)) or L (X (i, t)), where (i, t) and i are specific time

values. For example, X (1, ts1) = 0.0.

Mathematical notation has been used thus far, but automata are customarily depicted

graphically, e.g. see equation (2.3b). A box is drawn for each discrete mode, and the name

of the mode is written within the box. This is followed by the values of variables x̄ and

invariant F for that mode. Next, for each transition (q, q′) ∈ Arc, an arrow is drawn from

box q to q′. The guard γ(q,q′) is written near the tail of the arrow and reset ρ(q,q′) near the

head. Dummy transitions are not shown because their definition is fixed. LCCA models are

thus provided with a mixture of graphical and textual declarations.

2.3 Hybrid Trajectories

In the previous section we defined the LCCA framework, but it is not yet clear what it means

to solve a problem posed in this framework. Conceptually, the solution of a dynamical system

is a trajectory. A trajectory is a mapping from a timeline to the set of possible values for

all state variables, which are X and Q in our modeling framework. Also in our system, the

timeline is itself variable because event times are not fixed. A trajectory is feasible for a

given model if it obeys the constraints of that model.

For a hybrid system, a trajectory consists of alternating sequences of continuous and

discrete evolution. Let χ (i, t) = ((i, t) ,X (i, t) ,Q (i, t)) be a triplet consisting of a time point

and values of all continuous and discrete variables at that point. A continuous trajectory is

an interval [χ (i, tsi) −→ χ (i, tei)], where the integer component i of time does not change.

A discrete step is a pair 〈χ (i, t) 7→ χ (i + 1, t)〉, where we have used an arrow 7→ to separate

the two elements of the pair. During a discrete step, the real component of time t does not

change.

Finally, a hybrid trajectory is an ordered set of continuous trajectories

ξ = {[χ (i, tsi) −→ χ (i, tei)]}i∈N .

The discrete steps can be formed from the given continuous trajectories. They are the pairs
〈
χ (i, tei) 7→ χ

(
i + 1, tsi+1

)〉
for all i ∈ N\ {n}. Also, a timeline is implied by ξ. It is simply

T = {[tsi , t
e
i]}i∈N

, and this can be reformulated into T as discussed in Section 2.1.1.

CHAPTER 2. MODELING HYBRID SYSTEMS 26

2.4. RESULTS

Given an LCCA model (n,Gt,X, Aut,GV), a trajectory ξ is said to be feasible for that

model if

• the timeline T , or equivalently T, implied by ξ is feasible,

• all continuous trajectories [χ (i, tsi) → χ (i, tei)] are feasible, and

• all discrete steps
〈
χ (i, tei) 7→ χ

(
i + 1, tsi+1

)〉
are feasible.

The timeline T is feasible if

• tsi ≤ tei for all i ∈ N,

• tei = tsi+1 for all i ∈ N\ {n}, and

• Gt is satisfied.

If T is feasible, its corresponding T is feasible. Each continuous trajectory [χ (i, tsi) →

χ (i, tei)] is feasible if

• Q (i, tsi) = Q (i, t′) = Q (i, tei) for all (i, t′) such that (i, tsi) � (i, t′) � (i, tei). Discrete

variables do not change during continuous evolution.

• X (i, tsi), X (i, t′) and X (i, tei) satisfy GV and all F a (Qa (i)) at all times (i, t′) such

that (i, tsi) � (i, t′) � (i, tei). Differential equations in GV and the invariants in each

mode dictate the continuous evolution of continuous variables.

Each discrete step
〈
χ (i, tei) 7→ χ

(
i + 1, tsi+1

)〉
is feasible if

•
(
Qa (i, tei) , Qa

(
i + 1, tsi+1

))
∈ Arca for all automata a ∈ Aut. A transition is only

possible between modes for which a transition has been declared.

• X (i, tei) satisfies γa

(Qa(i,te
i),Qa(i+1,ts

i+1))
for all automata a ∈ Aut. A transition is only

allowed if the guard for that transition is satisfied.

• X
(
i + 1, tsi+1

)
satisfies GV and ρa

(Qa(i,te
i),Qa(i+1,ts

i+1))
for all automata a ∈ Aut. Re-

sets, along with any discontinuity equations in GV , govern how the values of continuous

variables jump during an event.

Let Ξ(n,Gt,X,Aut,GV) denote the set of all trajectories feasible for the given model.

2.4 Results

We now present a small example to clarify the technical definitions. A larger example in

Chapter 9 will be used to demonstrate the benefits of our framework.

Example 2.1 Consider that we have the following conceptual description of a system:

A thermostat can either be on or off. When it is on, temperature increases at a rate of

0.5 ◦F/min, and when it is off temperature decreases at rate 0.3 ◦F/min. The thermostat

should not be on if the temperature exceeds 75.0 ◦F, and when turned on, the temperature

CHAPTER 2. MODELING HYBRID SYSTEMS 27

2.4. RESULTS

should be allowed to rise to at least 67 ◦F. Finally, it should not be off if the temperature is

below 65 ◦F.

Now, our goal is to produce a formal representation of this system, and we accomplish this

with the LCCA model

n = 10 (2.3a)

on

θ̄ = 0.5
Θ(i, t) ≤ 75.0

off

θ̄ = −0.3
Θ(i, t) ≥ 65.0

Θ(i, t) ≥ 67.0

(2.3b)

dΘ (i, t)

dt
= θ̄ (Q (i)) ∀ (i, t) ∈ T (2.3c)

We have chosen to allow 10 intervals in the timeline. The component automata represents all

the constraints on the thermostat’s operation. The temperature Θ is governed by the differential

equation. In this simple example, it is affected by only a single hybrid process, but in general

there might be other terms on the right-hand-side. There are also no resets in this example.

Figure 2.3 shows a feasible trajectory for the temperature.

0.0 15.0 40.0 57.0 85.4 100.0
1 2 3 4 5

time

67.5

70.0

72.5

65.0

75.0

te
m

p
er

a
tu

re

Q on off on off on

Figure 2.3: Feasible trajectory for thermostat example.

The LCCA framework allows formulating models for discrete-continuous dynamical sys-

tems. Next, we consider optimizing such systems.

CHAPTER 2. MODELING HYBRID SYSTEMS 28

Chapter 3

Optimizing Hybrid Systems

The previous chapter introduced the linear coupled component automata (LCCA) frame-

work. Dynamic systems represented in the LCCA framework can have multiple feasible

trajectories. Optimization would allow the system to be operated along its most profitable

path. In this section, we first state what an optimization problem on an LCCA model is,

and then define a procedure for transforming this problem to a mixed-integer linear program

(MILP).

The transformation will serve two purposes. It is a systematic procedure for generating

an MILP, which connects our modeling framework to existing algorithms. But also, it

demonstrates how the framework we propose facilitates modeling. As we proceed through

the transformation from LCCA to MILP, it will be clear that equivalent declarations become

more cumbersome.

3.1 Optimization Problems

The notion of a feasible trajectory ξ for an LCCA model was defined in Section 2.3. Many

feasible trajectories are possible for a given model. There is freedom to choose the length

of time spent in each discrete mode, various discrete transitions are possible, and values of

jump variables are flexible. We used Ξ(n,Gt,X,Aut,GV) to denote the set of all trajectories

feasible for the given model. It is understood that we are working with a specific LCCA

model with elements (n,Gt,X, Aut,GV), and the subscript will usually be omitted.

An objective Ω is a metric on the space Ξ. An optimization problem seeks the trajectory

ξ ∈ Ξ such that Ω is minimized (or maximized) and is denoted

min
ξ∈Ξ

Ω.

The objective function can involve any of the real valued variables in the LCCA model,

which are the timeline variables t and the dynamic continuous variables X. For example, if

X represents cost, one may wish to minimize its final value. The objective is

Ω = X (n, ten) . (3.1)

29

3.2. CONSTRAINT CONVERSIONS

Or often one is concerned with a time average performance criterion,

Ω =
1

(ten − ts1)

∫ te
n

ts
1

X(i, t)dt

=
1

2 (ten − ts1)

∑

i∈N

(X (tsi) + X (tei)) ∆ti (3.2)

where the integral calculates trapezoidal areas because continuous variables evolve piecewise

linearly. Finally, in makespan minimization problems, the value of time is itself the objective,

Ω = ten. (3.3)

Such a problem would normally define the notion of a completed job, e.g. producing a

certain amount of material. The problem then is to complete the job as fast as possible.

Our general definition of a hybrid timeline allows systems to evolve indefinitely. For

optimization purposes, it is necessary to bound the timeline with respect to both the integer

and real components of time. The definition of LCCA requires specification of the number of

intervals n; so the number of intervals is fixed by definition. Actually, this is less restrictive

than it appears. If all transitions into a certain interval are dummy transitions, there has

been effectively no change in the physical behavior of the system. Fixing n to a constant

only provides an upper bound on the effective number of intervals. Second, the final time

ten, called the time horizon, must be bounded by or set equal to a time horizon Tmax by

adding the appropriate constraint in Gt.

The optimization problem we wish to solve is minξ∈Ξ Ω. An MILP is of the form

minx∈P Ω′, where x is a vector of real and integer variables and P is a region defined

by a system of mixed-integer linear inequalities. Our goal is to convert the former into the

latter. The objective function Ω must be converted into a form Ω′ allowed in MILP, and an

LCCA model must be converted into linear inequalities.

3.2 Constraint Conversions

Constraints in the LCCA framework contain several features not allowed in MP constraints:

they are quantified over infinite sets, they employ variable arguments, and finite domain

variables are used. In this section, methods for eliminating these features without altering

the meaning of the constraints are presented. These will be used in the next section, which

discusses a transformation for the full modeling framework.

First, we state a theorem needed a few times in the subsequent discussion.

Theorem 3.1. Let g (i) and f (i) be two constraints involving an index i ranging over a

set S. Assume g (i) holds for exactly one i, i.e. ∨i∈Sg (i) is true. Then, the conjunction of

implications
∧

i∈S

[g (i) ⇒ f (i)] (conj-impl)

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 30

3.2. CONSTRAINT CONVERSIONS

is equivalent to the disjunction of conjunctions

∨

i∈S

[g (i) ∧ f (i)] . (disj-conj)

The proof is provided in Appendix 3.A on page 40.

3.2.1 Eliminating Infinite Quantifiers

Several constraints are required to hold for all time points (i, t) ∈ T. All constraints in

LCCA are linear or piecewise linear. It is thus possible to consider a finite quantification

such that, if a constraint holds over it, it must hold over the infinite set.

First, consider the differential equations, which must be of the form (2.1). The derivative

is not continuous over changes in i, but integration over each interval can be considered. In

general, we have

dX (i, t) =

∫ t

ts
i

[
∑

a∈Aut

x̄a (Qa (i)) + k

]

dt ∀ (i, t) ∈ T, (3.4)

which gives

X (i, t) = X (i, tsi) +

[
∑

a∈Aut

x̄a (Qa (i)) + k

]

(t − tsi) ∀ (i, t) ∈ T. (3.5)

The quantification ∀ (i, t) ∈ T can be rewritten as ∀i ∈ N,∀t ∈ [tsi , t
e
i]. For a fixed i, the

above equation is linear in t. Thus, it suffices to consider only t = tei , giving

X (i, tei) = X (i, tsi) +

[
∑

a∈Aut

x̄a (Qa (i)) + k

]

∆ti ∀i ∈ N, (3.6)

where ∆ti = tei − tsi . In other words, the value of X is determined only at time points tsi and

tei . Given these, X (i, t) for any t ∈ [tsi , t
e
i] can be determined because X evolves linearly.

Infinite quantifications also occur in invariants F and certain constraints of GV . In both

cases, the constraints are required to be from L (X (i, t)). By definition of L, these are linear

and the situation is similar to equation 3.5. Each constraint involving X (i, t) can be written

for X (i, tsi) and X (i, tei) and then enforced over the finite set of intervals. For example, if

X represents mass, we might have the constraint

X (i, t) ≥ 0 ∀ (i, t) ∈ T, (3.7)

which requires mass to be non-negative at all times. This can be replaced with

X (i, tsi) ≥ 0 ∀i ∈ N (3.8a)

X (i, tei) ≥ 0 ∀i ∈ N, (3.8b)

which requires mass to be non-negative only at the beginning and end of every interval. But

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 31

3.2. CONSTRAINT CONVERSIONS

since it varies linearly within an interval, it is guaranteed to be non-negative at all points

in between.

3.2.2 Eliminating Variable Arguments

Both dynamic variables and parameters are, in various places, evaluated with variable ar-

guments. For example, X (i, tsi) is evaluated at the two arguments i and tsi . Argument i

can be interpreted as an index; it is not an unknown. However, the second argument tsi
is a variable, of unknown value, because event points are not fixed. Continuous dynamic

variables arise in this way in several locations: differential equations after integration (3.6),

discontinuity equations (2.2), and the initial conditions that are allowed in GV .

Automata specify a set of flow rates x̄. Each flow rate x̄ ∈ x̄ is a parameter, i.e. x̄ (q) is

a known constant given as part of the automaton’s declaration. However, in equation (3.6),

flow rates are used in the form x̄ (Q (i)), where the argument Q (i) is an unknown. Again,

there is a term with a variable argument.

Mathematical programs do not allow variable arguments of any form. We present meth-

ods for eliminating them in both forms encountered: X (i, tsi) or X (i, tei), and x̄ (Q (i)).

X (i, tsi) can be replaced with Xs (i) wherever it occurs. This is possible with the recog-

nition that X (i, tsi) depends ultimately on just i because its second argument tsi is itself fully

determined by i. Identically, all occurrences of X (i, tei) are replaced with Xe (i). Instead

of a single variable X evaluated at two time points (for every i), we have two variables Xs

and Xe (for every i).

Replacing x̄ (Q (i)) is motivated by the same insight. The value of x̄ (Q (i)) is ultimately

dependent on just i. Let us imagine another variable w̄ (i) such that w̄ (i) = x̄ (Q (i)) for

all i. The goal now is to satisfy this equation without resorting to any use of variable

arguments. One way to accomplish this is to require

∧

q∈Q

[Q (i) = q ⇒ w̄ (i) = x̄ (q)] ∀i ∈ N. (3.9)

This constraint considers every mode. If the automaton is in mode q, then w̄ (i) is set equal

to the parameter x̄ (q).

This is a conjunction of implications as in Theorem 3.1 if we recognize q as i, Q as S,

Q (i) = q as gi, and w̄ (i) = x̄ (q) as fi. The theorem can be applied if Q (i) = q holds for

exactly one q (for each i). This of course is true because a variable can only take a single

value. So the above can be reformulated into the disjunctive constraint

∨

q∈Q

[

Q (i) = q

w̄ (i) = x̄ (q)

]

∀i ∈ N. (3.10)

In general, a new variable w̄a will be needed for each x̄a ∈ x̄a of every automaton.

Let us implement these replacements into equation (3.6), which involves both trouble-

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 32

3.2. CONSTRAINT CONVERSIONS

some forms. It becomes the two constraints

Xe (i) = Xs (i) +
∑

a∈Aut

(w̄a (i) + k) ∆ti ∀i ∈ N (3.11)

∨

q∈Qa

[

Qa (i) = q

w̄a (i) = x̄a (q)

]

∀a ∈ Aut,∀i ∈ N. (3.12)

Unfortunately, the first equation contains a bilinearity w̄a (i) ∆ti.

A slight modification to the procedure allows producing a linear equation. Instead of

letting w̄ (i) = x̄ (Q (i)), require w̄ (i) = x̄ (Q (i)) ∆ti. Now, we can write

Xe (i) = Xs (i) +
∑

a∈Aut

(w̄a (i) + k∆ti) ∀i ∈ N (3.13)

∨

q∈Qa

[

Qa (i) = q

w̄a (i) = x̄a (q) ∆ti

]

∀a ∈ Aut,∀i ∈ N. (3.14)

Instead of having to multiply ∆ti with w̄a (i), it is multiplied by x̄a (q) within the disjunction.

The latter is a parameter, and so the equation is still linear.

3.2.3 Converting Finite Domains to Booleans

By definition of L, finite domain constraints are of the form Q (i) = q or Q (i) = Q (i + 1),

and these can be connected by the logical operators ¬, ∨, and ∧. Both equations can be

converted into Boolean propositions. For each dynamic finite domain variable Q of type

N → Q, introduce a Boolean variable Y of type Q × N →{true, false}. This allows

associating a Boolean with each possible value of the finite domain variable.

The equation Q (i) = q is simply replaced by the Boolean Y (q, i). This substitution

alone is not sufficient however. It would be possible for Y (q, i) and Y (q′, i) to both be true

for distinct q and q′. Translating this solution back into the original model would imply that

Q (i) takes two values. Clearly, that cannot be allowed. For every Boolean Y introduced, it

is necessary to include the constraint

∨

q∈Q

Y (q, i) ∀i ∈ N (3.15)

which guarantees that Y (q, i) will be true for exactly one q (for each i).

The equation Q (i) = Q (i + 1) effectively says that there exists some q such that the

automaton is in mode q for both intervals i and i + 1. Stated as a formula, we have

∃q ∈ Q s.t. [Q (i) = q ∧ Q (i + 1) = q] , (3.16)

and now the finite domain equations are in the simpler form. The existential quantifier,

when quantified over a finite set, is merely an alternative notation for indexed disjunction.

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 33

3.3. SYMMETRY BREAKING

Simply changing this notation and replacing the equations with Booleans gives

∨

q∈Q

[Y (q, i) ∧ Y (q, i + 1)] . (3.17)

3.3 Symmetry Breaking

In the course of generating an MILP, we also add some constraints for efficiency purposes;

these do not affect the model. The source of the inefficiency is dummy transitions. They

are a mathematical artifact allowing an automaton to transition but in a way that has no

physical consequence. Unfortunately, these introduce a redundancy in the set of feasible

trajectories because, at some event point, all automata might make a dummy transition,

meaning the system has not actually evolved. Also, this could occur at a continuum of time

values. An infinite number of mathematically distinct trajectories represent an identical

physical solution. Avraam et al. (1998, p. S225) recognized this problem in a related

system and proposed a solution which we accommodate to our framework.

A dummy event point is one at which all automata make dummy transitions. We require

all dummy event points to occur at the end of a trajectory, i.e. if i ∈ N\ {n} is a dummy

event point, then j is a dummy event point for all j > i. Also, the interval length after

each dummy event point should be zero, i.e. if i ∈ N\ {n} is a dummy event point, then

∆ti+1 = 0.0. Occurrence of a dummy event point means the effective number of intervals is

less than n. The trajectory with dummy event points squeezed at the end of the timeline

has many others equivalent to it. Adding the stated constraints makes all but this one

infeasible.

From the previous section, we let the Boolean Y a (q, i) substitute for the constraint

Qa (i) = q. For convenience, we let Y Y a (i) mean automaton a makes a dummy transition

at the ith event point and Y Y Y (i) mean the ith event point is dummy. These are defined

in terms of Y ’s with the constraints

Y Y a (i) ⇔
∨

q∈Qa

[Y a (q, i) ∧ Y a (q, i + 1)] (3.18)

Y Y Y (i) ⇔
∧

a∈Aut

Y Y a (i) . (3.19)

Now, the two symmetry breaking constraints are

Y Y Y (i) ⇒ Y Y Y (i + 1) ∀i ∈ N\ {n − 1, n} (3.20a)

Y Y Y (i) ⇒ (∆ti+1 = 0.0) ∀i ∈ N\ {n} . (3.20b)

The antecedent of both determines if i is a dummy event point by checking if all automata’s

discrete modes have remained unchanged. If so, the first requires the next event point to

also be dummy and the second sets the next interval length to zero. If the antecedent is

satisfied for i, the conclusion of the first constraint is such that its antecedent will be true

for i + 1. This causes the constraint to be iteratively enforced for all j > i. The antecedent

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 34

3.4. MODEL TRANSFORMATION

might not be satisfied for any i—there might not be any dummy event points—in which

case these constraints have no effect.

3.4 Model Transformation

Converting the optimization problem minξ∈Ξ Ω into the MILP minx∈P Ω′ requires converting

the objective and the model. Some objectives, e.g. minimize makespan, are already in an

MILP form. Others, e.g. time averaged cost, involve terms with variable arguments. These

are easily transformed by substituting variables Xs and Xe as discussed in Section 3.2.2. It

remains to convert an LCCA model into MILP constraints.

A few steps are required to transform each of the elements (n,Gt,X, Aut,GV) of an

LCCA model.

• The timeline is represented with MILP constraints.

• Component automaton are reformulated into two disjunctive constraints: one over the

discrete modes and the other over the transitions.

• These constraints along with GV are converted using the methods of the previous

section to eliminate infinite quantifiers, remove variable arguments, and transform

finite domain logic into Boolean propositions. The result is a generalized disjunctive

program (GDP).

• Finally, the GDP model is converted into an MILP using a technique provided by

Raman and Grossmann (1994).

The first element of an LCCA model n is used simply to define the index set N =

{1, . . . , n} in the MILP model. According to the definition of LCCA, n is used to construct

a hybrid timeline. The timeline is dictated by variables t, and these are included in the

MILP model unaltered. The constraints implicit in the definition of a hybrid timeline

tsi ≤ tei ∀i ∈ N (3.21a)

tei = tsi+1 ∀i ∈ N\ {n} (3.21b)

are included explicitly in the MILP model. Constraint Gt is already in an MILP form and

is included unaltered.

Each variable X ∈ X is of type T → R. Functions whose domains are infinite spaces

are not allowed in MILP. Following the methods of Section 3.2.2, each X will be replaced

with two variables Xs and Xe of type N → R. Such functions can be interpreted simply as

indexed variables and are allowed in MP models. Let Xs and Xe denote these new sets of

variables.

The component automata Aut are the most involved constructs of an LCCA model.

They can be restated as disjunctive constraints on real and finite domain variables. Recall

each automaton in Aut is of the form (Q, x̄, x̂, F,Arc). (In this section, we speak generically

of any automaton, and so the superscript a is omitted.) The finite domain space is left

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 35

3.4. MODEL TRANSFORMATION

unaltered but will now be interpreted as an index set. The parameters x̄ and variables x̂

also remain unchanged; they are of a type allowed in MILP. It is F and Arc that must be

transformed.

The invariant constraint F for each automaton is expressed as

F (Q (i)) ∀ (i, t) ∈ T, (3.22)

which says there is some constraint associated with each mode, and we apply the constraint

for the mode the system is currently in. Instead, consider each possible value of Q (i)

separately. Then, the above can be equivalently stated as

Q (i) = q ⇒ F (q) ∀q ∈ Q,∀ (i, t) ∈ T. (3.23)

If the automaton is in mode q, then the invariant for that mode must be applied. The

variable argument has been removed at the expense of introducing a quantifier. A universal

quantifier over a finite set can be viewed as a notational variation for indexed conjunction.

The above can be rewritten as

∧

q∈Q

[Q (i) = q ⇒ F (q)] ∀ (i, t) ∈ T. (3.24)

This is a conjunction of implications as in Theorem 3.1 if we recognize q as i, Q as S,

Q (i) = q as gi, and F (q) as fi. The theorem allows reformulating the constraint into a

disjunction over modes
∨

q∈Q

[

Q (i) = q

F (q)

]

∀ (i, t) ∈ T. (3.25)

The constraint still involves an infinite quantifier and the disjunct involves a finite domain

variable. Application of the constraint conversions discussed in Section 3.2 will produce a

disjunction in a GDP form.

At event i, a transition can occur from mode q to q′ if (q, q′) ∈ Arc. In addition, it is

required that both the guard γ(q,q′) and reset ρ(q,q′) are enforced. Written as a formula, we

can say

∧

(q,q′)∈Arc

[
(Q (i) = q ∧ Q (i + 1) = q′) ⇒ γ(q,q′) ∧ ρ(q,q′)

]
∀i ∈ N\ {n} . (3.26)

Every transition is considered. If the transition taken from interval i to i + 1 is from mode

q to q′, then the guard and reset along that transition are enforced.

Again, we have a conjunction of implications as in Theorem 3.1 if we recognize (q, q′)

as i, Arc as S, Q (i) = q ∧ Q (i + 1) = q′ as gi, and γ(q,q′) ∧ ρ(q,q′) as fi. The theorem is

applicable if Q (i) = q ∧ Q (i + 1) = q′ is valid only for a unique pair (q, q′). It must hold

for at least one pair because a transition must be made at an event. It does not hold for

more than one because component automaton, by definition, allow only a single transition

between any two modes (with possibly both modes the same). Thus, we can transform the

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 36

3.4. MODEL TRANSFORMATION

above constraint into a disjunction over transitions

∨

(q,q′)∈Arc

[

Q (i) = q ∧ Q (i + 1) = q′

γ(q,q′) ∧ ρ(q,q′)

]

∀i ∈ N\ {n} . (3.27)

The number of disjuncts can be reduced by recognizing that γ(q,q) and ρ(q,q) are identical

for all dummy transitions (q, q). First, let the finite domain constraint be replaced with the

Boolean proposition Y (q, i) ∧ Y (q′, i + 1), and recall equation (3.18) defined Y Y (i)—the

superscript a omitted for now—to mean an automaton makes a dummy transition at event

i. Now, the disjuncts can be partitioned to give








∨

(q,q′)∈Arc

q 6=q′

[

Y (q, i) ∧ Y (q′, i + 1)

γ(q,q′) ∧ ρ(q,q′)

]








∨

[

Y Y (i)

γ(q,q) ∧ ρ(q,q)

]

∀i ∈ N\ {n} . (3.28)

There is now one disjunct instead of |Q| for the dummy transitions.

The disjunction over modes (3.25) and the disjunction over transitions (3.28) can be

written for all component automaton a ∈ Aut, replacing F a and Arca for each.

These disjunctions along with GV still involve infinite quantifiers, variable arguments,

and finite domain constraints. Let F ′, γ′, ρ′, and G′
V refer to the respective constraints

after applying the conversions of Section 3.2. This introduces a new set of variables w̄,

when eliminating variable arguments in terms of the form x̄ (Q (i)). Let Y be the set

of Boolean variables introduced to replace the finite domain variables. In summary, the

resulting GDP model is

min
t,Xs,Xe,x̂,w̄,Y

Ω′ (GDP(LCCA))

s.t. tsi ≤ tei ∀i ∈ N

tei = tsi+1 ∀i ∈ N\ {n}

Gt

∨

q∈Qa

[

Y a (q, i)

F ′ (q)

]

∀i ∈ N,∀a ∈ Aut








∨

(q,q′)∈Arc

q 6=q′

[

Y (q, i) ∧ Y (q′, i + 1)

γ′
(q,q′) ∧ ρ′(q,q′)

]








∨

[

Y Y (i)

γ′
(q,q) ∧ ρ′(q,q)

]

∀i ∈ N\ {n} ,

∀a ∈ Aut

G′
V

Y Y Y (i) ⇒ Y Y Y (i + 1) ∀i ∈ N\ {n − 1, n}

Y Y Y (i) ⇒ (∆ti+1 = 0.0) ∀i ∈ N\ {n} .

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 37

3.4. MODEL TRANSFORMATION

Each of the elements (n,Gt,X, Aut,GV) of an LCCA model are represented in this GDP

model; so we call it GDP(LCCA). Element n is used to define the index set N = {1, . . . , n},

the first two constraints define a timeline, Gt is included unaltered, the two main disjunctions

represent the component automata, and G′
V is the result of converting the final component

GV . The symmetry breaking constraints are added for efficiency reasons. Items Qa, Aut,

and Arc are still present but they are now used only as index sets.

Model GDP(LCCA) is nearly in the form defined by Raman and Grossmann (1994),

and so their transformation can be mostly applied to produce an MILP. Two main steps

are required: the Boolean propositions within the disjunctions, G′
V , and the symmetry

breaking constraints are converted into integer constraints, and the disjunctive constraints

are transformed using the convex hull method.

An implicit requirement of Raman and Grossmann’s (1994) method is that exactly one

Boolean variable amongst all in the disjuncts of a disjunction must be true. For example,

their method can be applied to convert the disjunction over modes only if Yq∈QaY a (q, i)

holds for all i and a. This is satisfied because the disjunction over modes was obtained by

application of Theorem 3.1 for which the exclusivity constraint is a precondition. Similarly,

Y(q,q′)∈ArcaZa (q, q′, i) is guaranteed; so their method can be applied to the disjunction

over transitions also. Finally, G′
V will contain disjunctions of the form (3.14), and their

requirement is satisfied here also.

Model GDP(LCCA) differs from Raman and Grossmann’s form in two minor ways.

They allow only a single Boolean variable in disjunctive constraints, but the disjunction

over transitions includes the Boolean expression Y a (q, i) ∧ Y a (q′, i + 1). This is easily

rectified by adding the Boolean constraint

Za (q, q′, i) ⇔ (Y a (q, i) ∧ Y a (q′, i + 1)) ∀i ∈ N\ {n} ,∀a ∈ Aut,∀q, q′ ∈ Qa (3.29)

and then replacing the Boolean expression in the disjunct with Za (q, q′, i). (We can also

use Za to simplify equation (3.18) to Y Y a (i) ⇔ ∨q∈QaZa (q, q, i).)

The second difference arises in the symmetry breaking constraint

Y Y Y (i) ⇒ (∆ti+1 = 0.0) .

This is equivalent to the disjunction [¬Y Y Y (i)] ∨ [∆ti+1 = 0], which is not in the form

required for Raman and Grossmann’s method. However, this constraint is easily seen to be

equivalent to the mixed-integer inequalities

0.0 ≤ ∆ti+1 ≤ Tmax (1 − yyy (i)) . (3.30)

With this final conversion, model GDP(LCCA) is converted into an MILP.

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 38

3.5. CONCLUSIONS

3.5 Conclusions

Example 3.1 An LCCA model of a thermostat was presented in Example 2.1 on page 27. Using

the techniques provided in this chapter, we generate the following equivalent GDP model.

tsi ≤ tei ∀i ∈ N (3.31a)

tei = tsi+1 ∀i ∈ N\ {n} (3.31b)

∆ti = tei − tsi ∀i ∈ N (3.31c)






Y (on, i)

Θs (i) ≤ 75.0

Θe (i) ≤ 75.0




 ∨






Y (off, i)

Θs (i) ≥ 65.0

Θe (i) ≥ 65.0




 ∀i ∈ N (3.32a)

[

Z (on, off, i)

Θe (i) ≥ 67.0

]

∨
[

Z (off, on, i)
]

∨
[

Y Y (i)
]

∀i ∈ N\ {n} (3.32b)

Θe (i) = Θs (i) + w̄ (i) ∀i ∈ N (3.33a)

Θs (i + 1) = Θe (i) ∀i ∈ N\ {n} (3.33b)

∨

q∈Q

[

Y (q, i)

w̄ (i) = θ̄ (q) ∆ti

]

∀i ∈ N (3.33c)

∨

q∈Q

Y (q, i) ∀i ∈ N (3.34)

Y Y Y (i) ⇒ Y Y Y (i + 1) ∀i ∈ N\ {n − 1, n} (3.35a)

Y Y Y (i) ⇒ (∆ti+1 = 0.0) ∀i ∈ N\ {n} (3.35b)

Y Y (i) ⇔
∨

q∈Q

Z (q, q, i) ∀i ∈ N\ {n} (3.36a)

Y Y Y (i) ⇔ Y Y (i) ∀i ∈ N\ {n} (3.36b)

Z (q, q′, i) ⇔ (Y (q, i) ∧ Y (q′, i + 1)) ∀i ∈ N\ {n} ,∀q, q′ ∈ Q (3.36c)

Since there is only one component automaton in this small example, Y Y Y is identical to

Y Y .

We can see that the LCCA model is easier to formulate, and our transformation proce-

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 39

3.A. PROOF OF THEOREM 3.1

dure allows mechanically generating the more complex GDP constraints.

Through the previous chapter and this one, we have presented the overall goals of this

dissertation. The novel LCCA framework facilitates modeling be providing forms of expres-

sion more natural for hybrid systems. In this chapter, we demonstrated how models in the

LCCA framework can be systematically transformed into MILP models. This provides us

the ability to model in a more elegant system, while still benefiting from existing algorithms.

Further improvements to this work are needed: the models should be made comprehen-

sible to a computer and the transformations should be automated. Doing so requires more

rigorous definitions than provided so far.

Consider our definition of γ(q,q′), stated to be a constraint associated with each (q, q′) ∈

Arc. It is quite clear to us what is meant by this definition. However, expressing γ(q,q′)

in a computer language requires the constructs γ and (q, q′) to be defined more precisely.

The latter is an element of an index set that contains pairs. The modeler should be able to

define any such set; so we must define what the set of all index sets is. This will be done

in Chapter 6, where we provide a theory of indexing. Next, the modeler should be able

to define a construct called γ, which when applied to the pair (q, q′) returns a constraint.

In other words γ is a function that maps an index set to the space of constraints. The

modeler should be able to declare any γ of their choice; so we must define the set of all such

functions. This will be done in Chapter 7.

Only with these definitions in place will we have a definition of the set of all programs

we are considering. And only then can we define a mapping on this set, which is what a

model transformation is. The remainder of this dissertation regards employing type theory

to provide such definitions for the mathematical programming parts of our overall goal.

Appendix 3.A Proof of Theorem 3.1

Let us first define some terminology. Given an implication a ⇒ b, a is called the antecedent

and b the consequent. In a conjunctive constraint a ∧ b, each of a and b are called con-

juncts. For indexed conjunction ∧i∈Sg (i), each g (i) is called a conjunct. Similarly the

terms comprising a disjunctive constraint are called disjuncts.

The equivalence is proven by demonstrating implication in both directions.

First, we prove the forward implication: conj-impl ⇒ disj-conj, i.e. assume conj-impl is

true and show disj-conj must be true. An assumption of the theorem is that g (i) holds for

exactly one i. Without loss of generality, assume this value is i′. Rewrite conj-impl as

[g (i′) ⇒ f (i′)]
︸ ︷︷ ︸

lconj

∧
∧

i∈S\{i′}

[g (i) ⇒ f (i)]

︸ ︷︷ ︸

rconj

.

For conj-impl to be true, as is being assumed, both lconj and rconj must be true. First, we

state the conditions under which these both hold:

• lconj is true if f (i′) is satisfied. This is because, by assumption, the antecedent g (i′)

of lconj is true, and for the whole implication to be true, the consequent must be true.

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 40

3.A. PROOF OF THEOREM 3.1

• rconj is always true. This follows because we are assuming g (i′), and thus g (i) is

false for all i 6= i′. This means the antecedent g (i) of every conjunct of rconj is false,

making every conjunct true irrespective of the consequent f (i) because falsehood can

imply anything.

The net result is that f (i′) must be true. With this observation, it remains to show that

disj-conj must be true. Divide up disj-conj similarly as

[g (i′) ∧ f (i′)]
︸ ︷︷ ︸

ldisj

∨
∨

i∈S\{i′}

[g (i) ∧ f (i)]

︸ ︷︷ ︸

rdisj

For disj-conj to be true, either ldisj must be true or rdisj must be true. We show that

ldisj is true. By assumption g (i′) is true, and we just argued that f (i′) must be true. So

[g (i′) ∧ f (i′)] is true.

Now, we prove the implication in the opposite direction: disj-conj ⇒ conj-impl, i.e. show

that conj-impl must be true under the assumption that disj-conj is true. disj-conj can be

true if any one of its disjuncts is true. Let i′ be the index of one of the true disjuncts, i.e.

[g (i′) ∧ f (i′)] is true. In fact, this is the only disjunct that can be true because all others

require g (i) to hold for some i 6= i′, which violates the assumption of the theorem. So we

know that f (i′) must hold. Now, divide up conj-impl as above into lconj and rconj. It

remains to show that both lconj and rconj are true. It was assumed that g (i′) holds and

we just argued that f (i′) must hold; thus lconj follows immediately. rconj is vacuously true

because g (i) is false for all i 6= i′, making each conjunct of rconj true irrespective of f (i).

CHAPTER 3. OPTIMIZING HYBRID SYSTEMS 41

Chapter 4

Logical Formulation of

Mathematical Programs

Our purpose in the remainder of the dissertation is similar to that in the previous two chap-

ters in the sense that we wish to define modeling frameworks and transformations between

them. But it is also markedly different because we now make the stringent demand that

these definitions be comprehensible to a computer; in other words, that they be completely

formal.

A computer should be able to read in an arbitrary input file and determine definitively

whether the contents of the file do or do not represent a model in the purported framework.

It should accept models written in the most natural manner possible, not only those in a

canonical form. Next, the computer should be able to apply the desired transformation

and output the result. These demands are addressed for the framework of mathematical

programming (MP). Meeting them is not merely a software development matter. Rather,

we provide a novel logic-based definition of MP.

No knowledge of type theory is assumed in this chapter. We define MPs without indexing

to keep the initial formulation as simple as possible. Indexing significantly complicates the

theory and will be introduced in later chapters. Familiarity with induction and set relations

will be helpful, although we provide a rudimentary introduction in the next section. These

concepts are essential to the remainder of the dissertation.

The main content begins with a definition of the syntax of unindexed MPs, followed

by a declaration of the language’s type system, and finally a semantic interpretation of the

syntax. Small examples at the end demonstrate the results.

4.1 Mathematical Preliminaries

4.1.1 Induction

Virtually every definition in the main paper employs induction. Frequently, induction is

explained over the natural numbers, which is a special case of the version we use. Induction

over numbers follows the steps:

42

4.1. MATHEMATICAL PRELIMINARIES

1. Prove that a property P is true for k = 0.

2. Assume P is true for k = n, and under this assumption, prove that it holds for

k = n + 1.

3. Invoke the principle of induction to conclude that P is true (for all k).

This version depends on the existence of the natural numbers, requires the property of

interest to be parametric on numbers, allows only a single base case (k = 0), and allows the

induction step to proceed in only one direction (from k = n to k = n + 1). Type theory

requires a generalized principle of induction, which is more flexible and does not depend on

the prior existence of any mathematical construct.

The general idea is explained with an example; we provide an inductive definition of the

set of natural numbers. The definition is

k ::= 0 | succ (k) (4.1)

This notation is interpreted as follows. We are defining a set. An element of this set is

generically referred to as k. The definition then says that an element k can take one of two

syntactic forms; it can either be “0”, or given some other k it can be the string “succ (k)”.

This is just a way notating natural numbers; succ (k) does not represent an operation on k.

The first form is the base case; it is how we start producing elements of this set. The

second form is what makes this an inductively defined set. It says that, given any element k

in the set, succ (k) is also an element of the set. For example, “0” is in the set and thus so

is “succ (0)”. But now we have that “succ (0)” is in the set, and thus so is “succ (succ (0))”.

An infinite set has been defined, but all its elements are of one of two syntactic forms.

Note that we never named the set being defined. We usually will not, but let us momen-

tarily use Z+ to refer to the set defined above. It is understood that any use of “k” means

for all k ∈ Z+. However, we will subsequently not write the “for all k ∈ Z+” part.

The above definition has defined a syntax for natural numbers. Syntax is not a mere

notational matter. By defining the syntax of natural numbers, we have invented natural

numbers. The syntax being defined is called the abstract syntax, which is meant to capture

the core mathematical principles. It is usually necessary to introduce a concrete syntax to

simplify the notation and to accommodate practical considerations such as the fact that

most parsers only handle ASCII text. For example, we let “1” stand for “succ (0)” and “2”

for “succ (succ (0))”. Our focus is always on the abstract syntax. Providing concrete syntax

is a relatively minor matter and is discussed in Appendix C for our language.

The above definition of natural numbers is a special case of a more general definition style,

called an inductive definition. An inductive definition consists of a collection of inference

rules, which together define a set. For example, we define x nat to mean x is an object

in the set of natural numbers (customarily written x ∈ Z+). Statements such as x nat are

called judgements because we are judging an object to have a certain property—in this case,

that it lies in the set of natural numbers.

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 43

4.1. MATHEMATICAL PRELIMINARIES

An inference rule takes the form

J1 · · · Jm

J
(4.2)

where each Ji is a judgement. The meaning of this notation is that J is a conclusion that

holds if all of the preconditions J1, . . ., Jm hold. A collection of such rules defines a single

set. The definition of natural numbers can now be provided in the alternate form

0 nat
(4.3a)

x nat

succ (x) nat
(4.3b)

There are two rules. Together, they define the set of natural numbers. The first says that

the object “0” is a natural number, without condition. The second says that if x is a natural

number then so is “succ (x)”.

We now see that the definition (4.1) is just a compact notation for this more general

definition style. We used the symbol k to refer to objects that satisfy the judgement k nat.

This is useful because we may need objects with certain properties very often. Instead of

constantly saying x such that x nat, we can just use k. The compact notation was possible

only because of the simplicity of the preconditions. Usually, the general definition style will

be required.

Given a set, it is possible to define relations on the set. A binary relation, for example,

relates two elements to each other. Let R be a binary relation on the natural numbers.

The notation k1 R k2 means the pair (k1, k2) is an element of the relation R. The definition

of R can be provided inductively on the construction of k1 and k2. “On the construction

of” means the definition provides rules for each of the syntactic forms of k1 and k2. We

say “construction” because each of the syntactic forms 0 and succ (k) is a method for

constructing a natural number.

Let us consider an example. Define R by the rules

0R 0
(4.4a)

k1 R k2

succ (k1) R succ (k2)
(4.4b)

The first rule says that (0, 0) is in R. The second says that if (k1, k2) is in R, then so is

(succ (k1) , succ (k2)). Recall our convention; the second rule is implicitly written for all

k1 ∈ Z+, k2 ∈ Z+. The judgement, or relation, R that has been defined is of course known

as equality. Instead of R, let us name this judgement =. Then, instead of writing k1 R k2,

we write k1 = k2.

Thus, = is a set. It is a set of pairs of natural numbers. Now, various questions about

this set may be asked. For example, is (0, succ (0)) in the set? In other words, is 0 = succ (0)

true? It is not, and we can prove this by looking at the rules defining =. The conclusion of

neither rule matches the syntactic forms in question. Neither has a 0 as its left argument

and succ (0) as its right argument. Thus, (0, succ (0)) is not an element of =. We were able

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 44

4.1. MATHEMATICAL PRELIMINARIES

to determine that none of the infinity of elements in = matched (0, succ (0)) by looking at

the syntactic forms of the elements in =, of which there are just two combinations.

4.1.2 Types

All elements k in the set of natural numbers defined above are well-formed. However, in more

complex sets, it is usually not possible or convenient to provide a definition that immediately

contains only well-formed elements. In other words, there exists a need for syntax that

sometimes is well-formed but sometimes is not. A particularly important judgement, known

as a typing judgement, becomes important in these cases.

An example is a set of expressions, which might be defined by

e ::= k | true | false

| e1 + e2 | e1 − e2

| e1 ∧ e2 | e1 ∨ e2 (4.5)

There are seven syntactic forms. We would like 2 + 5 to be an expression, so we need the

syntax for addition expressions. However, by providing this, 2+false is also an expression,

which we do not want. The resolution is to introduce types, which lie at the core of the

eponymous theory.

Let us also define the types

τ ::= int | bool (4.6)

which happens not be an inductive set. There are exactly two types. Now, a typing judge-

ment e : τ can be provided to associate expressions with types. The relation “:” defines

which expressions are well-formed. An expression e is well-formed only if there exists a τ

such that e : τ is satisfied. The definition of “:” should be such that neither (2 + false, int)

nor (2 + false, bool) are an element of it.

We define e : τ with the rules

k : int
(4.7a)

true : bool
(4.7b)

false : bool
(4.7c)

e1 : int e2 : int

e1 + e2 : int
(4.7d)

e1 : int e2 : int

e1 − e2 : int
(4.7e)

e1 : bool e2 : bool

e1 ∧ e2 : bool
(4.7f)

e1 : bool e2 : bool

e1 ∨ e2 : bool
(4.7g)

The definition is said to be inductive on the form of e because there is one rule for each of

the syntactic forms of e.

The first rule states that any number k is of type int, without condition. The second

and third rules are similar for the Boolean constants. Next, the expression e1+e2 is declared

to be of type int if both e1 : int and e2 : int are true, and the remaining rules are similar.

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 45

4.2. SYNTAX

We wish to check whether the expression 2 + (3 − 1) is of type int. This expression is

in the form e1 + e2, where e1 is 2 and e2 is 3 − 1. We look for a rule whose conclusion is in

this form and find that the fourth rule matches. It says that 2 + (3− 1) : int is true under

the conditions 2 : int and (3 − 1) : int. We now must prove each of these. The judgement

2 : int matches the first rule; it is declared true without any conditions, so the recursion

stops. We must also check (3 − 1) : int, and by the same procedure eventually find that it

is true. So finally we conclude that the judgement 2 + (3 − 1) : int is satisfied.

Now, we try to check if 2 + false : int is satisfied. The fourth rule says it is under the

conditions 2 : int and false : int. The first of these is satisfied, but the second is not.

There is no rule whose conclusion has the expression false and type int. Thus, 2 + false

is not of type int. Similarly, we could find that it is also not of type bool.

We have been using a top-down proof strategy for type checking expressions. (It is called

top-down even though the notation makes it appear as if we are moving from bottom to

top). In general, given an expression e and type τ , we look at the conclusions of the rules

defining the judgement e : τ to find the one that matches the syntactic forms of the given

e and τ . Checking that the conclusion is satisfied requires moving to its preconditions and

checking them. The procedure continues until the recursion reaches base cases, which are

rules without preconditions or failure to match any rule.

We see that types categorize expressions. Every expression that is considered well-formed

must be categorized into some type, either int or bool. Later we will introduce the syntax

for propositions (called constraints in the MP literature) and whole programs. These too

must be type checked. Propositions and programs will however be categorized into only one

type. For example, propositions will either belong to the propositional type prop or not.

The judgements defining the well-formed propositions and programs are also called typing

judgements, but the term type by itself usually refers to the categories of expressions.

The examples given in this section were for tutorial purposes only. We will not actually

define numbers for we can rely on existing definitions. Also, the syntax we gave for expres-

sions is rather simple; it does not even include variables. Expressions with variables require

a more involved typing judgement than given above, but the essential idea is always that

mathematical constructs must belong to some category to be considered well-formed.

4.2 Syntax

The first step in defining a language is to declare its syntax. The language being defined is

called the object language, mathematical programs in our case. The language used to define

the object language is called the meta-language, English augmented with the notation of

type theory in this case. There are operations within the object language, such as addition,

but also we define operations on the syntax, called meta-operations.

In this section, we first define the full syntax of the object language, which consists

of expressions, types, propositions, and whole programs, and then define two basic meta-

operations.

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 46

4.2. SYNTAX

4.2.1 Full Forms

4.2.1.1 Types

The types of the language are

τ ::= real | bool (4.8)

The set of types is actually finite in this logic. It contains exactly two elements. In

subsequent chapters, we will introduce more sophisticated logics with an infinity of types.

Mathematical programs also require integers, and we will subsequently introduce int as a

refinement of real.

4.2.1.2 Expressions

Expressions are given by the syntax

e ::= x | r | true | false

| −e | e1 + e2 | e1 − e2 | e1 ∗ e2

| not e | e1 or e2 | e1 and e2 (4.9)

Any lone variable x by itself is an expression. We are not being too specific about what

constitutes a variable name, but it is understood to be some alphanumeric string. This is all

a variable is. Existing MP software provide constructs which make it appear as if bounds

or the “current” value are properties intrinsic to a variable. Treating variables as anything

more than symbols couples ideas that should be kept distinct.

After variables, we provide a constant in the form r, which stands for any real constant.

Actually, in our computer implementation, r is either an integer, e.g. 1, 2, or a rational,

e.g. 0.0, 3.1. There does not exist a method for expressing the irrationals. Nonetheless,

variables in MP can take any real value. So in general we have to allow r to denote also

the irrationals. This is an awkward situation. Variables must be allowed to take values that

we cannot express. That is however the situation in classical mathematics, and we are not

attempting a constructive reformulation of MP.

The standard numeric operators are also provided. Again, these are interpreted classi-

cally, as in current practice. These calculations cannot actually be carried out on a computer,

or by hand. They can in the case that the arguments happen to be integer or rational. There

are various ways for encoding the distinction between operations on integers, rationals, and

reals, but we do not address this matter in the current work.

Division is not provided. It is difficult to provide a proper theory of division because the

denominator has to be of type “real except zero”, but we have no such type. Enriching

the types to include this concept complicates the theory in other ways, which we hope to

address in future.

Finally, we provide the two Boolean constants true and false, and the standard Boolean

operators. These pose none of the complications of their numeric counterpart.

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 47

4.2. SYNTAX

4.2.1.3 Propositions

From expressions and types, we build propositions. The propositions of the language are

c ::= T | F

| isTrue e | e1 = e2 | e1 ≤ e2

| c1 ∨ c2 | c1 ∧ c2

| ∃x : τ � c (4.10)

Firstly, we provide the basic propositions truth T and falsehood F. Propositional truth

is distinct from Boolean truth, which is given by the Boolean constants true and false. A

Boolean expression e can be converted into a proposition by prefixing it with the keyword

isTrue. Distinguishing between Boolean expressions and propositions is important because

certain operations are valid only on one or the other.

Numerical expressions are formed into propositions by comparing their magnitudes, giv-

ing equations and inequalities. The proposition e1 ≥ e2 is not included because it can be

viewed as a notational synonym for e2 ≤ e1. It could be included if any algorithm benefitted

from this distinction.

A disjunction and conjunction operator on propositions is provided. Conjunction ∧

simply allows building up a set of propositions. Disjunction ∨ is the key novelty of disjunc-

tive programming over pure mixed-integer programming. Operators ∨ and ∧ operate on

propositions, and are distinct from operators or and and on expressions.

The “�” in ∃x : τ � c is called Peano’s dot and serves as an alternative to parentheses. It

stands for a left parenthesis, and the matching right parenthesis is implicitly as far to the

right as possible (Andrews, 2002, p. 15). The proposition ∃x : τ � c is read “there exists x

of type τ such that proposition c holds”. Although the existential quantifier is not common

in MP, it is a useful extension. Variables can be introduced locally because the x has scope

only in the body c of the existential proposition where it is introduced. There is no universal

quantifier. Adding one would extend the language to include semi-infinite programs but we

intentionally disallow this.

Occasionally, vector notation will be convenient. Let ~x = x1, . . . , xm be a vector of

variables, and similarly ~τ = τ1 × · · ·× τm a Cartesian product of m types. Then, ∃~x : ~τ � c is

an abbreviation for ∃x1 : τ1 � . . . ∃xm : τm � c. This is an abbreviation in the meta-language.

There are no vectors in the object language.

4.2.1.4 Programs

Finally, a mathematical program is

p ::= δx1:τ1,...,xm:τm
{e | c} (4.11)

where δ ::= min | max. The definition is not inductive; programs cannot be constructed from

other programs. So minimax problems for example cannot be expressed in our language.

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 48

4.2. SYNTAX

A program consists fundamentally of four things: a direction of optimization δ, a list

of optimization variables xj , an objective e, and a proposition c. The proposition can be

viewed as the feasible space of the problem. The space is the set of all points satisfying

the proposition. The value of the objective e is considered at all points in this space, and

the program returns the value that is the min (or max) of all such points. We have just

conceptually defined the meaning of a program. Section 4.5 defines the semantics more

precisely.

4.2.2 Free Variables

Knowing the variables occurring in a syntactic construct is a basic need. Variables occur

in expressions, propositions, and programs. The equation x = 3 has a single free variable

x. In contrast, the proposition ∃x : int � x = 3 has no free variables. There are however

two occurrences of x. The existential quantifier is known as a variable binder because it

introduces a variable, the first x. The second x is a use of this variable, and is a bound

variable.

Consider the proposition

(∃x : int � x = 3) ∧ (x = 4)

in which x occurs three times. The third x is unrelated to the first two. The first x gives

a name to a variable that will be used further in the proposition, but only the second x is

a use of this variable. The third x is an entirely different variable that had to have been

introduced elsewhere.

The above proposition has a single free variable, the third x. Say we wish to set x to

the value 5 in this proposition. The result is

(∃x : int � x = 3) ∧ (5 = 4) ,

leaving the bound variable, the second x, untouched.

Knowing the free variables of a syntactic construct is crucial. Without this we cannot

understand the meaning of a statement as simple as “let x equal 5”. We define how to

calculate the set of free variables in expressions, propositions, and programs. A closed

construct is one that has no free variables.

4.2.2.1 Free Variables of Expression

Let FV (e) denote the set of free variables in expression e. The definition of this function is

inductive on the construction of e. The notation of inference rules (4.2) is not used. That

notation is reserved for judgements, which are n-ary relations on sets and implies that a

top-down proof strategy is applicable. In contrast, FV (e) is simply a function operating on

expressions and returning a set of variables.

The definition is

1. FV (x) = {x}

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 49

4.2. SYNTAX

2. FV (r) = ∅

3. FV (true) = ∅

4. FV (false) = ∅

5. FV (op e) = FV (e), where op ∈ {−, not}

6. FV (e1 op e2) = FV (e1) ∪ FV (e2), where op ∈ {+,−, ∗, or, and}.

Consider computing FV (x + y). Expression x + y is of a form governed by rule 6. It

calls FV (x) and FV (y) which return {x} and {y}, respectively. The union of these is

{x, y}, and so FV (x + y) = {x, y}.

Let e closed mean FV (e) = ∅. This kind of notation is frequently used. closed is a

unary relation, consisting of all expressions which have no free variables.

4.2.2.2 Free Variables of Proposition

Let FV (c) denote the free variables of a proposition. Its definition is by induction on the

form of c,

1. FV (T) = ∅

2. FV (F) = ∅

3. FV (isTrue e) = FV (e)

4. FV (e1 op e2) = FV (e1) ∪ FV (e2), where op ∈ {=,≤}

5. FV (c1 op c2) = FV (c1) ∪ FV (c2), where op ∈ {∨,∧}

6. FV (∃x : τ � c) = FV (c) \ {x}.

Propositions involve expressions. Thus, FV (c) calls FV (e). The interesting case is the

existentially quantified proposition. The free variables of ∃x : τ � c are determined by first

calculating the free variables of c and then removing x from this set.

Consider the previous example, (∃x : int � x = 3) ∧ (x = 4). This proposition is in the

form c1 ∧ c2, so rule 5 is applied. There are no free variables in c1 and FV (c2) = {x}.

Taking their union gives

FV ((∃x : int � x = 3) ∧ (x = 4)) = {x} .

The free x arises from the right conjunct, not the left.

Let c closed mean FV (c) = ∅.

4.2.2.3 Free Variables of Program

Let FV (p) denote the free variables of a program. The definition is given by the rule

1. FV (δx1:τ1,...,xm:τm
{e | c}) = (FV (e) ∪ FV (c)) \ {x1, . . . , xm}.

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 50

4.2. SYNTAX

The idea is the same as for the existentially quantified proposition. In a program

δx1:τ1,...,xm:τm
{e | c} ,

variables x1, . . . , xm are bound in both e and c.

Let p closed mean FV (p) = ∅. A well-formed program must always be closed. Vari-

ables must be introduced somewhere. Since programs are the top level construct, a free

variable is necessarily an error.

4.2.3 Substitution

In the previous section, we defined procedures for calculating the free variables of expres-

sions, propositions, and programs. It is often necessary to replace the free variables of a

construct with some other expression. We gave the example of the proposition

(∃x : int � x = 3) ∧ (x = 4)

with x set to 5, and saw that only the free occurrences of x got replaced. In this section

we define the procedure for substituting an expression for a variable into either another

expression or a proposition. Substituting into a program will not be needed since programs

are forbidden to have free variables.

Let x = x′ mean the variables x and x′ are identical and x 6= x′ mean they are distinct.

We do not define these binary relations because variables are taken to be alphanumeric

strings, and it is reasonable to assume that such an equality test is available.

4.2.3.1 Substitution into Expression

Let {e/x} e′ denote the substitution of e for free occurrences of x in e′. The definition of

this procedure is inductive on the form of e′,

1. {e/x}x′ =

{

if x = x′ then e

else x′

2. {e/x} r = r

3. {e/x} true = true

4. {e/x} false = false

5. {e/x} (op e) = op {e/x} e, where op ∈ {−, not}

6. {e/x} (e1 op e2) = ({e/x} e1 op {e/x} e2), where op ∈ {+,−, ∗, or, and}.

The definition parallels the definition of FV (e). Variable x is free in the expression

x′ only if x′ = x. If not, there are no occurrences of x in x′, and no substitution should

take place. Constants have no variables at all, so substituting into them has no effect.

Substitution into other expressions recurses into their nested expressions.

Let {e1/x1, . . . , em/xm} e denote the simultaneous substitution of each ej for each xj

into e. The order in which the substitutions are done will not matter as long as FV (ej) ∩

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 51

4.2. SYNTAX

{x1, . . . , xj−1, xj+1, . . . , xm} = ∅ for all j = 1, . . . ,m. This is imposed as a precondition of

simultaneous substitution.

Vector notation is occasionally used. Let ~x = x1, . . . , xm be a vector of variables, and

similarly ~e = e1, . . . , em. Then, {~e/~x} e′ is an abbreviation for {e1/x1, . . . , em/xm} e′.

4.2.3.2 Substitution into Proposition

Let {e/x} c denote the substitution of e for x in c. The definition is by induction on the

form of c,

1. {e/x} (T) = T

2. {e/x} (F) = F

3. {e/x} (isTrue e′) = (isTrue {e/x} e′)

4. {e/x} (e1 op e2) = ({e/x} e1 op {e/x} e2), where op ∈ {=,≤}

5. {e/x} (c1 op c2) = ({e/x} c1 op {e/x} c2), where op ∈ {∨,∧}

6. {e/x} (∃x′ : τ � c) =







if x 6∈ FV (∃x′ : τ � c) then

∃x′ : τ � c

else if x′ 6∈ FV (e) then

∃x′ : τ � {e/x} c

else

{e/x} (∃x′′ : τ � {x′′/x′} c)

where in the final else branch, x′′ chosen such that x′′ 6∈ (FV (c) ∪ FV (e)).

Substitution into the existentially quantified proposition, rule 6, requires explanation.

We first check if x is free in ∃x′ : τ � c. If it is not, no substitution is required, and the

proposition is returned unaltered. If it is free, substitution is required but we must be sure

to avoid variable capture, which would occur if x′ is free in e. The “else if” branch performs

the substitution in the nested proposition c only if this is not the case. If x′ is free in e,

the substitution method in the final “else” clause must be used. This uses α-conversion to

rename the variable being introduced by the existential quantifier, and then performs the

substitution on this converted proposition.

A concrete example will help. Say the substitution being considered is

{(x′ + 1) /x} (∃x′ : τ � x′ = 1 ∧ (x = 2)) .

The x′ in x′ + 1 is unrelated to the x′ in x′ = 1 because the latter occurs within the scope

of the existential quantifier. If we mistakenly perform the substitution without checking for

the possibility of variable capture, we get

∃x′ : τ � (x′ = 1) ∧ ((x′ + 1) = 2) ,

which is erroneous. Now the x′ in x′ + 1 is within the scope the quantifier. The problem

occurred because the bound variable x′ is free in the expression x′ + 1 being substituted for

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 52

4.3. TYPE SYSTEM

x. The correct thing to do is to first rename the bound variable. We change the proposition

∃x′ : τ � (x′ = 1) ∧ (x = 2) to ∃x′′ : τ � (x′′ = 1) ∧ (x = 2), which does not alter the meaning

of the proposition in any way, and then perform the substitution.

Let {e1/x1, . . . , em/xm} c denote simultaneous substitution into a proposition, and re-

quire the same precondition as for simultaneous substitution into an expression.

4.3 Type System

A mathematical program is a syntactic construct in the form p. However, the syntax includes

ill-formed programs. We now define a typing judgement for each syntactic construct. This

defines the subset of the syntax that we wish to consider well-formed. Also, it categorizes

the language’s objects so that meta-operations can know the nature of the object being

operated on.

First, we define another necessary construct. Let Γ be a context of variables. Its defini-

tion is

Γ ::= ∅ | Γ, x : τ (4.12)

which essentially defines a list of elements of the form x : τ . A context can either be empty,

or given a context, an item x : τ can be added to it. A context maintains a list of variable

names and the types of those variables. It is assumed that variable names are unique.

A context is required to make sense of expressions and propositions with free variables.

Whether the expression x + 2 is well-formed depends on the type of x, which must be

provided by the context within which x + 2 occurs. The syntactic constructs τ , e, c, and p

comprise the object language. In contrast, Γ is used only in the meta-language.

4.3.1 Well-Formed Type

Strictly, we need to know whether a type is well-formed. We have only two types and both

are well-formed in this simple language. For completeness, let τ type mean that τ is a

well-formed type. The definition of this judgement is simply

τ type
(4.13)

Recalling our convention, this judgement is implicitly written for all τ . So there are really

two rules defined here, one where τ is real and the other where it is bool. In later chapters,

we introduce more sophisticated type theories where this judgement will be less trivial.

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 53

4.3. TYPE SYSTEM

4.3.2 Well-Formed Context

Let Γ ctxt mean the context Γ is well-formed. Its definition simply requires all types in it

to be well-formed,

∅ ctxt
(4.14a)

τ type Γ ctxt

Γ, x : τ ctxt
(4.14b)

There are two rules, one for each form of a context. The context ∅ is well-formed without

condition. Any context of the form Γ, x : τ is well-formed if the type τ being added is a

well-formed type, and if the rest of the context is well-formed.

4.3.3 Type of Expression

Assigning a type to an expression requires a context to obtain information about its free

variables. Let the ternary relation Γ ` e : τ mean, in context Γ, e is of type τ . The ` is used

in logic to denote a statement that is true under a certain hypothesis. Γ ` e : τ can also be

read “under the hypothesis Γ, it is possible to prove that e is of type τ”. The hypothesis in

this case is an assumption about the types of the free variables.

The definition of Γ ` e : τ is inductive on the form of e. There is one rule for each form

of e in the following definition,

Γ ` x : τ
where (x : τ) ∈ Γ (4.15a)

Γ ` r : real
(4.15b)

Γ ` true : bool
(4.15c)

Γ ` false : bool
(4.15d)

Γ ` e : real

Γ ` −e : real
(4.15e)

{Γ ` ej : real}2
j=1

Γ ` e1 + e2 : real
(4.15f)

{Γ ` ej : real}2
j=1

Γ ` e1 − e2 : real
(4.15g)

{Γ ` ej : real}2
j=1

Γ ` e1 ∗ e2 : real
(4.15h)

Γ ` e : bool

Γ ` not e : bool
(4.15i)

{Γ ` ej : bool}2
j=1

Γ ` e1 or e2 : bool
(4.15j)

{Γ ` ej : bool}2
j=1

Γ ` e1 and e2 : bool
(4.15k)

The first line defines not just a single rule, but as many rules as there are elements in

Γ. If a variable x is known to be of type τ in the given context, then, within that context,

it is possible to conclude that x is of type τ . Most expressions of the form x are ill formed.

Consider an x′ not in Γ. No rule’s conclusion matches this expression. Thus, Γ ` x′ : τ

is not element of the relation being defined. Alternatively, taking the proof theoretic view,

under the hypothesis Γ, it is not possible to prove that x′ : τ .

The second rule declares every r to be of type real. The context Γ is not used in any

preconditions; there are no preconditions. The conclusion is satisfied irrespective of the

context. Rules for the Boolean constants are similar.

The rule for −e concludes that −e is of type real in a context Γ if, in that same context,

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 54

4.3. TYPE SYSTEM

e is of type real. Binary operations are similar but they have two preconditions. The unary

and binary operations on Booleans are analogous.

Consider type checking the expression (y − 1) ∗ x in the context x : real, y : real. This

expression is of the form e1 ∗ e2 for which there is one rule. The rule’s conclusion

x : real, y : real ` (y − 1) ∗ x : real

requires checking the two preconditions

x : real, y : real ` (y − 1) : real

x : real, y : real ` x : real

The first rule regards an expression of the form e1 − e2, and the second is of the variable

form. By continuing the procedure, we eventually determine that these are both satisfied.

Finally, the recursion returns to the original question, and (y − 1) ∗ x is determined to be

of type real.

4.3.4 Well-Formed Proposition

Expressions are categorized into types. Propositions are also categorized but there is only

one category, which we call prop. Since there is only one propositional type, we did not

bother to define its syntax. Nonetheless, the typing judgement for propositions is funda-

mentally similar to that of expressions. In both, the relevant construct must belong in some

category.

Let Γ ` c prop mean, in context Γ, c is a well-formed proposition. The definition is

inductive on the form of c,

Γ ` T prop
(4.16a)

Γ ` F prop
(4.16b)

Γ ` e : bool

Γ ` isTrue e prop
(4.16c)

Γ ` e1 : real Γ ` e2 : real

Γ ` e1 = e2 prop
(4.16d)

Γ ` e1 : real Γ ` e2 : real

Γ ` e1 ≤ e2 prop
(4.16e)

Γ ` c1 prop Γ ` c2 prop

Γ ` c1 ∨ c2 prop
(4.16f)

Γ ` c1 prop Γ ` c2 prop

Γ ` c1 ∧ c2 prop
(4.16g)

τ type Γ, x : τ ` c prop

Γ ` ∃x : τ � c prop
(4.16h)

The propositions T and F are well-formed without condition. The first proposition

isTrue e is well-formed if e is of type bool. A Boolean expression is a Boolean propo-

sition. The keyword isTrue is provided to make the notation clear. Without it, it would

not be clear if e refers to an expression or a proposition.

Equations and inequalities are well-formed if their left- and right-hand-sides are both

of type real. Next, a disjunction or conjunction of well-formed propositions produces a

well-formed proposition.

Finally, consider the rule for propositions of the form ∃x : τ � c. This is the first rule

demonstrating how variables get added to the context. In context Γ, this proposition is

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 55

4.4. REFINED TYPES

a prop if c is a prop in the context Γ augmented with the declaration x : τ . Since the

existential quantifier introduces the variable x for use within its body, checking the body

requires adding x to the context.

4.3.5 Well-Formed Program

Let p mp mean p is a well-formed mathematical program. No context is required because a

program cannot have any free variables in it. There is just one rule because programs are

of only one syntactic form

{τj type}m
j=1

x1 : τ1, . . . , xm : τm ` e : real

x1 : τ1, . . . , xm : τm ` c prop

δx1:τ1,...,xm:τm
{e | c} mp

(4.17)

First, we check that the types of all the optimization variables are well-formed. The objective

function and proposition can employ any of the declared optimization variables. Within the

context x1 : τ1, . . . , xm : τm, the objective must be of type real, and the proposition must

be a prop.

Now, given any program within the syntax p, the top-down proof strategy can be used to

check that it is well-formed. All nested propositions and expressions will get checked as the

prover checks preconditions. Before showing some examples, we discuss type refinements

and define the semantics of a program.

4.4 Refined Types

Thus far, variables can only be ascribed the type real or bool. In mathematical programs,

however, we often wish to restrict the domain of the variable further. For example, numeric

variables are sometimes restricted to integer values. Also, the compiler defined in the next

chapter requires knowing whether certain variables are bounded, and if so, what those

bounds are. We call such information a variable’s domain. A domain can also be viewed as

a refinement of a type τ . We now introduce a mechanism for declaring not only a variable’s

type, but a more restricted domain.

Firstly, the syntax for domains, or refined types, is

ρ ::= 〈rL, rU 〉 | 〈rL,∞) | (−∞, rU 〉 | real

| [rL, rU] | [rL,∞) | (−∞, rU] | int

| {true} | {false} | bool (4.18)

Domain 〈rL, rU 〉 denotes a bounded interval of reals, 〈rL,∞) an interval bounded only from

below, (−∞, rU 〉 an interval with only an upper bound, and real an unbounded interval.

real could be written as (−∞,∞) to be consistent with the interval notation but we choose

real to coincide with the type symbol. Integer intervals are defined similarly but are

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 56

4.4. REFINED TYPES

denoted with square brackets. int is the unbounded interval of integers, i.e. the set of

integers. {true} and {false} are singleton sets, refinements of bool.

A domain can be thought of as a subset of a type. For example, 〈1.0, 9.0〉 is a subset

of real. The relationship between domains and types is made precise with the judgement

ρ ⊆ τ , defined by the rules

〈rL, rU 〉 ⊆ real
(4.19a)

〈rL,∞) ⊆ real
(4.19b)

(−∞, rU 〉 ⊆ real
(4.19c)

real ⊆ real
(4.19d)

[rL, rU] ⊆ real
(4.19e)

[rL,∞) ⊆ real
(4.19f)

(−∞, rU] ⊆ real
(4.19g)

int ⊆ real
(4.19h)

{true} ⊆ bool
(4.19i)

{false} ⊆ bool
(4.19j)

bool ⊆ bool
(4.19k)

The syntax of the language can now be modified to allow specification of a variable’s

domain, instead of just its type. A variable’s type could be declared in two places, existential

quantifiers and the top level of a program. Instead of ∃x : τ � c, we now allow the syntax

∃x : ρ � c, and instead of δx1:τ1,...,xm:τm
{e | c}, we allow δx1:ρ1,...,xm:ρm

{e | c}.

Domains do not affect our notion of a well-formed program. Given a program in this

new syntax, we transform it into the original syntax for type checking. The proposition

∃x : ρ � c is converted to ∃x : τ � c, where ρ ⊆ τ . Similarly, δx1:ρ1,...,xm:ρm
{e | c} is converted

to δx1:τ1,...,xm:τm
{e | c}, where ρj ⊆ τj for each j. There is thus no operator which could

be defined to work only on the reals between 0.0 and 100.0, but not on other reals. Any

operator is either valid on all reals or none.

What a domain declaration does do is restrict the values a variable can take. The

declaration x : ρ is like specifying a constraint on x. The judgement x : ρ w c associates a

declaration x : ρ with a proposition c. The definition of w is inductive on ρ,

x : 〈rL, rU 〉 w rL ≤ x ∧ x ≤ rU
(4.20a)

x : 〈rL,∞) w rL ≤ x
(4.20b)

x : (−∞, rU 〉 w x ≤ rU
(4.20c)

x : real w T
(4.20d)

x : [rL, rU] w rL ≤ x ∧ x ≤ rU
(4.20e)

x : [rL,∞) w rL ≤ x
(4.20f)

x : (−∞, rU] w x ≤ rU
(4.20g)

x : int w T
(4.20h)

x : {true} w isTrue x
(4.20i)

x : {false} w isTrue (notx)
(4.20j)

x : bool w T
(4.20k)

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 57

4.5. SEMANTICS

In the special case that a domain is a type, no bounding information is provided. For more

refined domains, a lower and/or upper bound are stated.

Despite the x : ρ w c judgement, domain declarations are not constraints. The declara-

tion 〈rL,∞) states a known fact, x is a value larger than rL. In contrast, the proposition

rL ≤ x states no such thing—the value of x might be less than rL. The proposition will be

false in this case, but that might be okay, depending on the situation in which it occurs.

Retaining knowledge of bounds requires a context of variable domains. Similar to Γ, we

define the refined context

Υ ::= ∅ | Υ, x : ρ (4.21)

In truth, both Γ and Υ must be maintained. However, Υ suffices in practice because it

contains the information of Γ. The judgement ρ ⊆ τ allows synthesizing the coarser Γ from

the more informative Υ. Given a refined context Υ, let Γ (Υ) be its corresponding coarse

context. Γ (Υ) is defined inductively on the construction of Υ,

1. Γ (∅) = ∅

2. Γ (Υ, x : ρ) = Γ (Υ) , x : τ if

ρ ⊆ τ

Now, it is clear that refined contexts Υ can be maintained instead of coarse contexts Γ.

Nonetheless, the differing purposes of the two should be kept in mind. Γ provides

information on the nature, type, of a variable. Υ provides some possible bounds, given that

the nature of the variable is known. It so happens that the form of bounding information

is dependent on the type being bounded, and so the type can be extracted from the bound,

via ρ ⊆ τ .

The compiler defined in the next chapter will need to know if certain variables have

bounded domains. Let ρ bounded mean ρ represents a bounded region. Its definition is

given by the rules

〈rL, rU 〉 bounded
(4.22a)

[rL, rU] bounded
(4.22b)

{true} bounded
(4.22c)

{false} bounded
(4.22d)

bool bounded
(4.22e)

For numeric domains, both an upper and lower bound is required. The domain bool and

its refinements are all bounded. Actually, this judgement is needed only on numeric types;

the Boolean domains are included only for completeness.

4.5 Semantics

Thus far we have defined the syntax of mathematical programs and a method for determining

which programs are well-formed. However, we do not know what a program means. The

language’s type system declares the expression 2+3 to exist. However, that this expression

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 58

4.5. SEMANTICS

equals 5 has never been stated. In this section, we define how to evaluate an expression,

and then what it means for a proposition to be true and for a mathematical program to be

solved.

We only define the meaning of a program, but do not provide an implementation of

this meaning. In other words, our definition does not provide an algorithm for solving a

mathematical program, but it does state exactly what the input-output relation of such an

algorithm must be.

Only the semantics of well-formed constructs need to be defined. It is assumed in this

section that all constructs satisfy their respective typing judgements.

4.5.1 Evaluation of Expression

It would not help much to say that 2 + 3 evaluates to 1 + 4. There is something special

about the expression 5; we consider it fully evaluated while expressions 2 + 3 and 1 + 4 are

reducible. Expressions that cannot be further reduced are called canonical expressions. Let

e canonical be a judgement defined by the rules

r canonical
(4.23a)

true canonical
(4.23b)

false canonical
(4.23c)

Canonical expressions are also called constants or values, but these terms can be somewhat

misleading in the richer languages we introduce in later chapters. They are important

enough to justify a special notation. Let v denote an expression satisfying v canonical.

We now define the evaluation of any closed expression to a canonical form. Open expres-

sions must first be assigned values for their free variables, as will be discussed subsequently.

Given e closed, e ↘ v means e evaluates to v. Its definition is inductive on the form of e,

1. r ↘ r

2. true ↘ true

3. false ↘ false

4. −e ↘

{

r if e ↘ −r

−r if e ↘ r

5. e1 op e2 ↘ r if

e1 ↘ r1 and e2 ↘ r2, where r1 op r2 = r, for op ∈ {+,−, ∗}

6. not e ↘

{

true if e ↘ false

false if e ↘ true

7. e1 or e2 ↘

{

true if either e1 ↘ true or e2 ↘ true

false otherwise

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 59

4.5. SEMANTICS

8. e1 and e2 ↘

{

true if e1 ↘ true and e2 ↘ true

false otherwise
.

There is no rule for expressions of the form x, which violate the precondition that the

expression be closed. Constants evaluate to themselves. Next, consider rule 5, for the form

e1 + e2 for concreteness. According to the rule, this expression evaluates to r if e1 evaluates

to r1, e2 evaluates to r2, and r1 + r2 = r. The last requirement can be confusing if the

distinction between object language and meta-language is not kept in mind. The + in e1+e2

is an operator in the object language, the language we are defining. The + in r1 + r2 = r is

an operation in the meta-language. We take as a given in the meta-language some method

for adding numeric constants. This method is employed in defining the operations within

the object language. The identical distinction must be kept in mind for the other operators.

Our definitions for evaluating numerical expressions take a classical approach to math-

ematics. There is in fact no computational method for executing these operations. This

however coincides with current practice and is sufficient for our goals. Providing a compu-

tational theory for the reals is a significant challenge being addressed by others.

4.5.2 Truth of Proposition

Let c true mean proposition c is true, assuming c closed. The truth of an open proposi-

tion requires first assigning values to its free variables and is discussed subsequently. The

definition of c true is inductive on the form of c,

1. T true

2. (isTrue e) true if

e ↘ true

3. (e1 op e2) true if

e1 ↘ r1 and e2 ↘ r2 and r1 op r2, for op ∈ {=,≤}

4. (c1 ∨ c2) true if

either c1 true or c2 true

5. (c1 ∧ c2) true if

both c1 true and c2 true

6. (∃x : ρ � c) true if

{v/x} c true for some v ∈ ρ

We now have at least three notions of truth: the Boolean constant true, the proposition

T, and the truth of a proposition given by c true. The symbol T must not be confused

with the interpretation of it as true. It is interpreted as true only because we have defined

it so in rule 1. These distinctions and their importance are discussed by Martin-Löf (1987,

1996). There is no rule for the proposition F, meaning F true is never true.

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 60

4.5. SEMANTICS

By rule 2, Boolean propositions are interpreted as true if the corresponding expression

evaluates to true. By rule 3, an equation is satisfied if its left- and right-hand-sides eval-

uate to constants that are equal. Analogously for inequalities. Again, we take a classical

approach. There is in fact no computer implementation for comparing two real numbers.

In rule 4, we define c1 ∨ c2 to be true if either c1 is true or c2 is true. This follows

the constructivists’ view of disjunction. Classically, one might prove the truth of c1 ∨ c2

in various other ways, with proof by contradiction for example. One would prove that not

(c1 ∨ c2) true implies something absurd, such as F true. Our constructive definition of

disjunction does not accept this on the basis that, in practice, if we declare c1∨c2 to be true,

we probably have in mind that either c1 is true or that c2 is true. Proof by contradiction

does not provide any such information. It allows concluding that c1 ∨ c2 is true without

actually knowing either that c1 is true or that c2 is true.

We also require a constructive proof for the truth of a conjunction c1 ∧ c2. When we

declare c1 ∧ c2 to be true, we are normally thinking that in fact we know that both c1 is

true and that c2 is true. Our definition demands this. Proof by contradiction does not.

Finally, when we declare ∃x : ρ � c to be true, we normally think that we now know that

c is true for some particular value of x. This value v is called the witness because it allows

us to witness the truth of c. Proof by contradiction would not provide any such witness.

Existential quantification is a generalization of disjunction, and the definitions of their

truth are analogous. The proposition ∃x : ρ � c effectively declares an infinity of disjuncts, c

for each choice of x. By requiring that c be true for a particular choice of x, we are requiring

knowledge of which one of these disjuncts is true. This is the same requirement as in binary

disjunction, where we required that either c1 be true or that c2 be true.

We have, at various points now, provided classical and constructive definitions. So

clearly, our aim is not to take one view or the other. We are attempting only to provide

a logical formulation of mathematical programming as it is currently practiced. In cur-

rent practice, real numbers are treated classically. However, it seems that the truth of a

proposition is treated constructively. For example, consider the proposition

∃x1 : real � ∃x2 : real � (x1 + x2 = 3.0) ∧ (x1 + 2.0 ∗ x2 = 6.0) ,

which is just a system of linear equations. In present algorithms, this system of equations

is certainly satisfied by finding witnesses for x1 and x2 such that the equations are satisfied.

Furthermore, the conjunction of the two equations is certainly shown to be true by showing

that each of the equations is true. Witnesses are also demanded by users of MP software.

One wants to know the values of the variables for which an equation is satisfied. We thus

believe that our definitions coincide closely to current practice.

4.5.3 Solution of Mathematical Program

Finally, we state what it means to solve a mathematical program. There are a few possibil-

ities: the program can have an optimum, it can be infeasible, it can be unbounded, or, for

nonlinear programs, it could be bounded but have no optimum. The final possibility also

exists for linear programs with irrational constants. We simplify these possibilities into two,

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 61

4.5. SEMANTICS

either the program has an optimum or not.

Let

roption ::= NONE | SOME(r) (4.24)

be an optional real number. This is basically the set of reals augmented with the value

NONE. It allows us to correctly state that a function might return a real number or perhaps

fail to do so. Now, let p� roption mean the solution to program p is roption. If p� NONE,

the judgement means the program does not have an optimum. If p� SOME(r), then there

is an optimal solution r. Instead of roption, we could have defined a set with additional

elements, such as UNBOUNDED and INFEASIBLE. This would provide more specific

information about why there is no optimum, but the simpler form suffices for our purposes.

Prior to defining �, we introduce some notation that will ease its definition. Given a

program δx1:ρ1,...,xm:ρm
{e | c}, let ~ρ = ρ1×· · ·×ρm be the Cartesian product of the program

variables’ types. Then ~v ∈ ~ρ is an m-tuple, and vj denotes its jth component. Also, let F

be the feasible space of the program. We have F = {~v ∈ ~ρ | {~v/~x} c true}, i.e. all points

in the space ~ρ for which proposition c is satisfied.

Then, the definition of � is given by the rules

1. minx1:ρ1,...,xm:ρm
{e | c}�







if F = ∅ then

NONE

else if ∃~v ∈ F � ∀~v′ ∈ F � r ≤ r′ then

SOME(r)

else

NONE

2. maxx1:ρ1,...,xm:ρm
{e | c}�







if F = ∅ then

NONE

else if ∃~v ∈ F � ∀~v′ ∈ F � r ≥ r′ then

SOME(r)

else

NONE

where {~v/~x} e ↘ r and {~v′/~x} e ↘ r′.

The two rules are similar. Consider minimization for concreteness. First we check if the

feasible space is empty. If so, we can immediately conclude that there is no optimum. In

the “else if” branch, we seek a feasible point ~v such that the value of the objective function

r at this point is less than or equal to the value r′ at all other feasible points. There might

not be such a point—the feasible space might be unbounded or bounded but with only an

infimum—in which case the “else” branch returns NONE. The rule for maximization is

identical except that r must be greater than or equal to all r′.

As with existential propositions, we have required that a solution of a mathematical

program provide a witness ~v, when there is an optimum. This clearly coincides with how

existing algorithms work and with the demands we make of MP software. We would like to

know not only the optimum solution but also the point at which it occurs.

An algorithm f for solving a mathematical program operates on the space of well-formed

programs and returns a solution, either the optimum or a statement that there is no opti-

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 62

4.6. RESULTS

mum. Any algorithm should be sound and complete with respect to the semantics we have

defined. Soundness means it is correct; if f (p) = roption, then p � roption should be true.

Completeness means the algorithm works for all mathematical programs; if p � roption,

then f (p) = roption.

4.5.4 Open Forms

So far we have defined the meaning of closed forms. Programs must be closed, so this

suffices. However, expressions and propositions can have free variables, and it is useful to

understand their meaning with free variables. This requires stating values for the variables.

We cannot ask what x + 3 evaluates to or whether the equation x = 3 is satisfied, absent a

value for x. A valuation is a list of variables with assigned values. Precisely, it is defined by

Ψ ::= ∅ | Ψ, x = v (4.25)

where x = v means x is assigned the value v.

Now, let Ψ ` e ↘ v mean, under the valuation Ψ, e evaluates to v. It is required that

Ψ include a value for all the free variables in e. This judgement is defined by induction on

the form of Ψ,

1. ∅ ` e ↘ v if

e ↘ v

2. Ψ, x = v′ ` e ↘ v if

Ψ ` {v′/x} e ↘ v

If Ψ is empty, then e must be closed, and evaluation on closed expressions, defined in

the previous section, is employed. If Ψ contains an assignment x = v, then this value is

substituted into e, and we recurse.

Similarly, let Ψ ` c true mean proposition c, not necessarily closed, is true under the

valuation Ψ. Its definition is

1. ∅ ` c true if

c true

2. Ψ, x = v ` c true if

Ψ ` {v/x} c true

4.6 Results

An alternative logical definition of mathematical programs has been provided in this chapter.

The linguistic emphasis of logic leads to a definition that is simultaneously a convenient

computer language. Also, an expression, proposition, and whole program are now as formal

a mathematical object as is an integer. Just as we define functions on integers, we can now

define operations on proposition and program spaces. Converting a general mathematical

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 63

4.6. RESULTS

program to a pure mixed-integer program is exactly such an operation, and we will define it

in the next chapter. Furthermore, the rigor demanded by type theory exposes subtle details

not previously considered. For example, there is a difference between Boolean conjunction

and propositional conjunction. The importance of this distinction will be seen when we

convert Boolean expressions into integer propositions.

We also defined the semantics of a mathematical program. This specifies what the input-

output relation of an algorithm for solving an MP should be. It exposes the challenges of

implementing algorithms on a computer, namely real computation, but also, it elucidates

the information we want from algorithms. Current software provide the feasible point and

the optimum, but often one wants to know why the feasible point is feasible. There is little

to no support for this kind of analysis. The information sought is the proofs we discuss in

our interpretation of an MP. They allow understanding why a program has the optimum it

does or why the problem is infeasible.

A benefit to developers of MP software is that the definitions are thorough and serve as

a specification of the software architecture. The software implementation of the judgement

p mp is nearly identical to its mathematical definition, provided in this chapter. As software

gets more sophisticated, the formal approach of type theory will be required to design it.

The implementation does differ from the theory in minor ways. We did not include the

printing of error messages in the theory, but the following example will show that error

messages arise directly from the judgements we did define. Also, our parser only supports

ASCII text. So, as discussed in Appendix C, the concrete syntax differs from the abstract

syntax used in the theory, but this is a minor detail.

A user can now write a program in the syntax p, which is both similar to how mathematics

is written on paper and formal enough to be understood by a computer. Then, the judgement

p mp can be tested automatically. We show some examples of our software’s input and

output. The input is a program in the syntax p, and the output provides error messages in

case p mp fails to hold.

Example 4.1 The following program involves a simple disjunctive constraint.

1 var x:real

2 var y:real

3

4 min x subject_to

5 (isTrue y, x <= 3.0) disj (isTrue (not y), x >= 4.0)

In the concrete syntax, the keyword disj represents propositional disjunction ∨, and a simple

comma denotes propositional conjunction ∧.

We check the judgement p mp on the above program and get the following error messages,

ERROR: type analysis failed

context: x:real, y:real

expr at 5.9: y

type: bool

MSG: ill-formed prop, previous messages should explain why

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 64

4.6. RESULTS

context: x:real, y:real

prop at 5.2-5.9: isTrue y

The first error message states that type analysis, the judgement Γ ` e : τ , failed. The particular

Γ, e, and τ that were being checked are printed. The expression is stated to be on line 5, column

9. One can refer back to the program to see which expression this is, but also it is printed within

the message. (Longer expressions are not re-printed in their entirety to avoid clutter.) The

message tells us that y must be of type bool for the program to be well-formed.

In a more complex program, this message by itself may not help. We may wonder why this

needs to be true. Subsequent messages show why this judgement was called. The next message

says the judgement

x : real, y : real ` isTrue y prop

is failing. Now we know why the previous judgement was being checked. For isTrue y to be a

well-formed proposition, y must be of type bool.

This message is labeled MSG to indicate that it was not the end source of an error. Rather

this judgement failed due to its precondition failing, which was the previous message labeled

ERROR. Additional messages are also printed, but we have shown only the relevant ones. The

entire call stack leading to the check p mp is generally printed.

Our error is now evident. We accidentally declared y to be of type real but meant it to be

of type bool. We fix the program,

1 var x:real

2 var y:bool

3

4 min x subject_to

5 (isTrue y, x <= 3.0) disj (isTrue (not y), x >= 4.0)

Again, we check the judgement p mp, and this time there are no errors.

Example 4.2 In this example, we show that propositional and Boolean operations are distinct.

Consider the program

1 var x:real

2 var y1:bool

3 var y2:bool

4

5 min x subject_to

6 isTrue y1 and y2 and

7 x = 0

Here, the software does not even get to the type checking phase. It prints the message

ERROR at 6.1-6.6: syntax error

which says that the given program is not even of the syntax p. The reason is we have accidentally

used Boolean conjunction and when we were trying to denote propositional conjunction ∧.

The program is corrected to

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 65

4.6. RESULTS

1 var x:real

2 var y1:bool

3 var y2:bool

4

5 min x subject_to

6 isTrue y1 and y2,

7 x = 0

We have replaced the second and with propositional conjunction, which in the concrete syntax

can be denoted with a comma. The program now is of a valid syntax (and also type checks).

These examples demonstrate that we have a rigorous method for checking that a program

falls within the set of mathematical programs according to our definition. In the next

chapter, we define functions operating on this set.

CHAPTER 4. LOGICAL FORMULATION OF MATHEMATICAL PROGRAMS 66

Chapter 5

Compiling Mathematical

Programs

One benefit of our definition of MP is that solution methods can be developed on the full

structure, taking advantage of Boolean solvers and direct disjunctive techniques. Nonethe-

less, most existing algorithms operate only on the sub-language known as mixed-integer

programming (MIP), which allows only a conjunction of (in)equations on reals and integers.

See Figure A.1 on page 182 for a description of MP and its sub-languages.

It is possible to convert a general MP to a pure MIP (under certain conditions). The

two main tasks are to convert Boolean expressions into integer constraints and disjunctive

constraints into mixed-integer constraints. Currently, these are manual tasks, which has

several drawbacks: one must be familiar with the transformation methods, the manual

labor is tedious and error-prone, and it is difficult to analyze the procedure. Automation

would enable wider application of MIP solvers, produce trustworthy models, greatly speedup

the modeling process, and allow improvements to be investigated within a formal theory.

In this chapter, we define a mapping from MP to MIP. The basic ideas follow from work

by others and are reviewed in Appendix A. Our contribution is defining these transfor-

mations on the richer syntax provided in the previous chapter and defining them precisely

enough for implementation on a computer. We will see that these definitions depend cru-

cially on the type system of MP defined in the previous chapter.

Converting from one language into another is called compiling in programming language

terminology. Although compilers are usually thought of as generating machine executable

code, the fundamental idea is the same here. The compiler definition elucidates one benefit

of formalizing mathematical programs as a logic. It enables treating programs as formal

objects. Program spaces can then be used as the domain and codomain of a function, the

compiler.

5.1 Sub-Languages

A compiler transforms a source language into a target language. In our case, the target

language is MIP and happens to be a sub-language of the source language MP. Defining an

67

5.1. SUB-LANGUAGES

MP was the purpose of the previous chapter. We now restrict that definition to the class of

MIPs, which is easy to do.

Strictly, the compiler we will define is valid for nonlinear MPs, but it is a poor trans-

formation in this case. Our main applications are for programs that are linear, and we also

define this class. Finally, we will define the subset of programs whose disjuncts are bounded,

which is a precondition of compilation.

5.1.1 Mixed-Integer Programs

The full syntax of MP involves types τ , refined types ρ, expressions e, propositions c, and

programs p. A subset of that syntax comprises what we consider a MIP. Let τmip, ρmip, emip,

cmip, and pmip refer to the restricted syntax. These are defined by

τmip ::= real

ρmip ::= 〈rL, rU 〉 | 〈rL,∞) | (−∞, rU 〉 | real (5.1)

| [rL, rU] | [rL,∞) | (−∞, rU] | int (5.2)

emip ::= x | r

| −emip | emip

1 + emip

2 | emip

1 − emip

2 | emip

1 ∗ emip

2 (5.3)

cmip ::= T | F

| emip

1 = emip

2 | emip

1 ≤ emip

2

| cmip

1 ∧ cmip

2

| ∃x : ρmip � cmip (5.4)

pmip ::= δx1:ρmip

1
,...,xm:ρmip

m
{emip | cmip} (5.5)

There are basically two restrictions: MIPs do not allow disjunctive propositions nor the

type bool. Due to the latter, we exclude Boolean constants and operators from expressions

because these could not possibly type check.

Superscripts allowed the definitions to be made in the compact form. We also use the

judgement form; for example, p mip means p is a program in the restricted syntax pmip.

The following definitions will also be needed,

Υmip ::= ∅ | Υmip, x : ρmip (5.6)

Ψmip ::= ∅ | Ψmip, x = vmip (5.7)

where vmip stands for an expression satisfying e canonical and e mip. Only numeric

constants r satisfy this form, i.e. MIP values are numbers.

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 68

5.1. SUB-LANGUAGES

5.1.2 Linearity

Programs that are linear are significantly easier to solve than nonlinear ones, and customized

algorithms are applied to them. We define a method for determining the subset of programs

that are linear. We avoid calling these linear programs (LPs) because that is a standard

term referring to programs with further restrictions. Our definition checks that the numeric

propositions in a program do not involve multiplication of two variables. It simply disregards

Boolean propositions, and disjunctive propositions are declared linear if the equations and

inequalities in them are.

This terminology is common but can be misleading. It is odd to declare a Boolean propo-

sition linear—multiplication is not even a valid concept within it. It is similarly awkward to

define disjunctive propositions as linear because they represent nonconvex regions. Really,

the terminology refers to programs that can be transformed to programs that are linear,

not ones that are linear themselves. Programs so classified could be converted to nonlinear

programs also, depending on the transformation method used.

Let e linear mean expression e can be transformed to a linear numeric expression. Its

definition is

x linear
(5.8a)

r linear
(5.8b)

true linear
(5.8c)

false linear
(5.8d)

e linear

−e linear
(5.8e)

e1 linear e2 linear

e1 + e2 linear
(5.8f)

e1 linear e2 linear

e1 − e2 linear
(5.8g)

e1 ∗ e2 linear
if FV (e1 ∗ e2) = ∅ (5.8h)

e2 linear

e1 ∗ e2 linear
if FV (e1) = ∅ (5.8i)

e1 linear

e1 ∗ e2 linear
if FV (e2) = ∅ (5.8j)

not e linear
(5.8k)

e1 or e2 linear
(5.8l)

e1 and e2 linear
(5.8m)

The interesting rule is for multiplication e1 ∗ e2. Either e1 or e2 must not contain any

variables. Other arithmetic expressions simply check their sub-expressions recursively.

Let c linear mean any expression e in c satisfies e linear. We do not give the definition

explicitly. It simply checks that all nested expressions within the proposition are linear. A

program p is linear, p linear, if its objective and feasible space are. Precisely,

e linear c linear

δx1:ρ1,...,xm:ρm
{e | c} linear

(5.9)

5.1.3 Mixed-Integer Linear Programs

Finally, let p milp mean program p is a mixed-integer linear program. Its definition is

p mip p linear

p milp
(5.10)

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 69

5.2. CONJUNCTIVE NORMAL FORM

According to Nemhauser and Wolsey (1999, p. 4), the numeric parameters of an MILP

should be rational. Otherwise an optimization problem might have an infimum or supremum

but no optimum. Strictly, the definition above does not check for this condition. However,

our computer implementation anyways has no method for expressing irrational constants.

So programs expressed in our software satisfy this requirement by default.

5.2 Conjunctive Normal Form

Boolean expressions are converted into integer constraints by first putting them into con-

junctive normal form (CNF). We first define CNF and then provide a method for putting

arbitrary expressions into this form. From the definition of Γ ` e : τ , it is clear that only

expressions of the form x, true, false, not e, e1 or e2, and e1 and e2 could possibly be in-

volved in a Boolean expression. All discussions in this section disregard other expression

forms.

5.2.1 Definition of CNF

The definition of CNF requires two auxiliary forms to be defined first, called literal and

disjunctive literal forms. Let e literal mean expression e is a literal. It is defined by the

rules

x literal
(5.11)

true literal
(5.12)

false literal
(5.13)

e literal

not e literal
(5.14)

A literal form is a lone variable, a Boolean constant, or a negation of these. Some definitions

of CNF first introduce an atomic form and require a negated expression to be in atomic

form. This will not be needed for our purposes.

Let e dlf mean expression e is in disjunctive literal form. Expressions satisfying the

following rules are in this form,

e literal

e dlf
(5.15a)

e1 dlf e2 dlf

e1 or e2 dlf
(5.15b)

Disjunctive literal forms include all literals and extend to include disjunctions.

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 70

5.2. CONJUNCTIVE NORMAL FORM

Finally, let e cnf be the relation defining conjunctive normal forms. Its definition is

e dlf

e cnf
(5.16a)

e1 cnf e2 cnf

e1 and e2 cnf
(5.16b)

Conjunctive normal forms include all disjunctive literal forms and extend to include con-

junction.

The negation of the judgements will be written by prefixing with a ¬, e.g. e ¬literal

means e is not a literal. We will need to refer to cnf expressions that are not dlf. Let

e conj be defined by
e cnf ¬e dlf

e conj
(5.17)

The name of this judgement is motivated by the following observation.

Remark 5.1. e conj is satisfied only by expressions e in the form e1 and e2.

Proof. Obvious from the definition of e cnf and e dlf. Any Boolean expression e must be

in the form x, true, false, not e′, e1 or e2, or e1 and e2. If it is any of these except e1 and e2,

it will satisfy e dlf.

5.2.2 Transforming to CNF

Let e1 y e2 be a binary relation on expressions. It relates an arbitrary Boolean expression

e1 to its conjunctive normal form e2. Its definition is not just inductive on e1. The form

of e1 is first considered, but further induction on its nested expressions is required. The

basic idea follows known techniques; see for example Visser (2001) or Chang and Lee (1987,

p. 12–15). Our definition can be considered tutorial. It demonstrates the set theoretic

approach we espouse for describing such transformations. This is the only tenable approach

for defining more complex program transformations needed later.

The main judgement e1 y e2 takes an expression e1 and returns an expression e2 such

that e2 cnf. The definition of y is

e cnf

e y e
(5.18a)

e1 ¬cnf e1 y∗ e2

e1 y e2
(5.18b)

If the expression is already in cnf, nothing is done, i.e. the relation is reflexive. Expressions

not in cnf are passed to an auxiliary relation e1 y∗ e2, which is defined only for e1 such

that e1 ¬cnf.

The definition of e1 y∗ e2 is inductive on e1 and its nested forms. Only expression forms

which could possibly be Boolean need to be considered—there are six: x, true, false, not e,

e1 or e2, and e1 and e2. Three have no nested expressions, one is a unary operator, and two

are binary operators. Thus, up to 1+1+1+6+36+36 = 81 rules could be needed. The total

is reduced because some are already in cnf, a simple observation allows covering all and

expressions with a single rule, and a less simple observation allows covering or expressions

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 71

5.2. CONJUNCTIVE NORMAL FORM

with a few rules. The rules are

e1 y e′

not not e1 y∗ e′
(5.19a)

(not e1) and (not e2) y e′

not (e1 or e2) y∗ e′
(5.19b)

(not e1) or (not e2) y e′

not (e1 and e2) y∗ e′
(5.19c)

(e11 or e2) and (e12 or e2) y e′

(e11 and e12) or e2 y∗ e′
(5.19d)

(e1 or e21) and (e1 or e22) y e′

e1 or (e21 and e22) y∗ e′
where e1 not and (5.19e)

e1 y e′1 e2 y e′2 e′1 or e′2 y e′

e1 or e2 y∗ e′
where e1 nor e2 are and (5.19f)

e1 y e′1 e2 y e′2 e′1 and e′2 y e′

e1 and e2 y∗ e′
(5.19g)

There are many fewer rules than the 81 possibly needed. So it is not immediately obvious

that all required cases are covered. The following theorem states that they are.

Theorem 5.2 (Completeness). Let e1 be an expression such that Γ ` e1 : bool for some

context Γ. Given e1, there exists e2 such that e1 y e2.

Proof. The precondition states that the theorem concerns only expression forms that could

be Boolean. Recall these forms are: x, true, false, not e, e11 or e12, and e11 and e12. The

proof is by case on the form of e1.

1. e1 is x, true, or false. Variables and constants are in cnf. The reflexivity rule of

e1 y e2 applies with e2 being e1.

2. e1 is not e. The proof is by further induction on the form of e in not e.

(a) e is x, true, or false. Again the overall expression is already in cnf.

(b) e is not e11. Then there are two possibilities. Either not not e11 is already in

cnf, handled by the first rule of y, or it is not, handled by the second rule of

y. The second rule recursively calls (not not e11) y∗ e2. Now the question is

whether there exists e2 such that (not not e11) y∗ e2. The precondition for the

rule handling this form is e11 y e2. By inductive hypothesis (IH), there exists

an e2 such that e11 y e2. Thus there exists an e2 such that (not not e11) y∗ e2.

And thus there exists an e2 such that (not not e11) y e2.

(c) e is e11 or e12. The overall expression then is not (e11 or e12), which cannot be in

cnf. The second rule of y is the only one that could apply, and so the recursion

calls y∗. The second rule of y∗ handles this case and the result follows by IH.

(d) e is e11 and e12. The situation is identical to the e11 or e12 case.

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 72

5.3. COMPILING MP TO MIP

3. e1 is e11 or e12. Possibly this expression is already in cnf, in which case the first rule

of y applies. If not, the recursion calls y∗. There are three rules in y∗ applying

to an expression of the form e11 or e12. The first matches forms where e11 is an and

expression and e12 is any form. The second matches forms where e11 is any form

except an and (to exclude cases already included by the previous rule) and e12 is an

and expression. The third rule handles the case where neither e11 nor e12 are and

expressions. Thus, collectively these three rules allow e11 and e12 to be any form,

but they have been broken down into more specific cases. The final conclusion that

there exists e2 such that e11 or e12 y e2 follows by IH because each of the three rules’

preconditions call y.

4. e1 is e11 and e12. This could already be in cnf, handled by the reflexivity rule of y. If

it is not, the second rule of y calls y∗. There is one rule defining y∗, which handles

all and expressions regardless of its nested forms, and the conclusion follows by IH

because this rules’ precondition calls y.

5.3 Compiling MP to MIP

We now define a compiler for converting general MPs to MIPs. However, as discussed in

Appendix A, the convex hull method by which our compiler is motivated requires disjuncts

to be bounded. We define a precondition that implies the satisfaction of this requirement

and then define the compiler.

Checking that a proposition defines a bounded region would require a domain inference

procedure. The condition we check for instead is whether every disjunct can be made

bounded. This is easier; it requires that a refined context Υ provide bounds for every

variable occurring in every disjunct. Let Υ ` c DisjVarsBounded mean Υ contains

bounds for all variables free in or existentially introduced within any of the disjuncts in c.

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 73

5.3. COMPILING MP TO MIP

The definition is

Υ ` T DisjVarsBounded
(5.20a)

Υ ` F DisjVarsBounded
(5.20b)

Υ ` isTrue e DisjVarsBounded
(5.20c)

Υ ` e1 op e2 DisjVarsBounded
where op ∈ {=,≤} (5.20d)

{ρj bounded}m
j=1 {cj ExistVarsBounded}2

j=1

Υ ` c1 ∨ c2 DisjVarsBounded

where FV (c1 ∨ c2) = {x1, . . . , xm} , and Υ (xj) = ρj (5.20e)

Υ ` c1 DisjVarsBounded Υ ` c2 DisjVarsBounded

Υ ` c1 ∧ c2 DisjVarsBounded
(5.20f)

Υ, x : ρ ` c DisjVarsBounded

Υ ` ∃x : ρ � c DisjVarsBounded
(5.20g)

Propositions that cannot involve any disjunctions, such as an equation, trivially satisfy

this judgement. The conjunctive and existential propositions simply recurse on their sub-

proposition. The rule for the disjunctive proposition first checks that all free variables in the

disjunction have bounds and then checks that all variables introduced within the disjuncts

are bounded.

The latter is done by employing the judgement c ExistVarsBounded, which means all

variables existentially introduced within c are bounded. The definition of this judgement is

T ExistVarsBounded
(5.21a)

F ExistVarsBounded
(5.21b)

isTrue e ExistVarsBounded
(5.21c)

e1 op e2 ExistVarsBounded
where op ∈ {=,≤} (5.21d)

{cj ExistVarsBounded}2
j=1

c1 ∨ c2 ExistVarsBounded
(5.21e)

{cj ExistVarsBounded}2
j=1

c1 ∧ c2 ExistVarsBounded
(5.21f)

ρ bounded c ExistVarsBounded

∃x : ρ � c ExistVarsBounded
(5.21g)

The interesting rule is the one for the existential proposition. This checks that the domain

ascribed to the introduced variable is bounded. Other forms simply recurse on their sub-

propositions or are trivially satisfied if they do not have sub-propositions.

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 74

5.3. COMPILING MP TO MIP

Let p DisjVarsBounded mean all variables in all disjunctions in program p have known

bounds. Its definition is

x1 : ρ1, . . . , xm : ρm ` c DisjVarsBounded

δx1:ρ1,...,xm:ρm
{e | c} DisjVarsBounded

(5.22)

Our compiler is defined only for programs satisfying this condition. It is a sufficient but

not necessary condition. There exist MPs that can be transformed to MIPs but that our

compiler is not defined for.

In the next sections, we define a compiler for each syntactic construct in turn: types,

expressions, propositions, and finally whole programs.

5.3.1 Type Compiler

All occurrences of types have been replaced with refined types in the syntax. So actually,

the type compiler is not needed, but it is important to understand the relationship between

the types of the languages. Let τ
type
7−→ τmip be a type compiler. Its definition is

real
type
7−→ real

(5.23)

bool
type
7−→ real

(5.24)

Let ρ
rtype
7−→ ρmip be a refined type (domain) compiler. It retains more specific information

than the type compiler. The definition of
rtype
7−→ is inductive on the form of ρ,

〈rL, rU 〉
rtype
7−→ 〈rL, rU 〉

(5.25a)

〈rL,∞)
rtype
7−→ 〈rL,∞)

(5.25b)

(−∞, rU 〉
rtype
7−→ (−∞, rU 〉

(5.25c)

real
rtype
7−→ real

(5.25d)

[rL, rU]
rtype
7−→ [rL, rU]

(5.25e)

[rL,∞)
rtype
7−→ [rL,∞)

(5.25f)

(−∞, rU]
rtype
7−→ (−∞, rU]

(5.25g)

int
rtype
7−→ int

(5.25h)

{true}
rtype
7−→ [1, 1]

(5.25i)

{false}
rtype
7−→ [0, 0]

(5.25j)

bool
rtype
7−→ [0, 1]

(5.25k)

The relation is simply reflexive for all numeric domains, since these are already MIP

domains.

The bool type compiles to [0, 1]. The domain of a variable dictates the values it can

take. So the domain compiler states a decision about how valuations in the source and

target language relate. Consider a source program with the declaration x : bool. In the

compiled program, this declaration becomes x : [0, 1]. In other words, choosing a value of

true or false for x in the source language must correspond to choosing either the value 0

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 75

5.3. COMPILING MP TO MIP

or 1 for x in the compiled program. Whether true corresponds to 0 or 1 is not stated by

this rule alone.

Singleton domains give more precise information. By defining {true}
rtype
7−→ [1, 1], we

have decided to make true correspond to 1. This decision regards only values, canonical

expressions, not general expressions. A non-canonical expression that evaluates to true in

the source language need not take the value 1 in the compiled program.

Let Υ
ctxt
7−→ Υmip be a refined context compiler. Its definition is

∅
ctxt
7−→ ∅

(5.26a)

Υ
ctxt
7−→ Υmip ρ

rtype
7−→ ρmip

Υ, x : ρ
ctxt
7−→ Υmip, x : ρmip

(5.26b)

5.3.2 Expression Compiler

Numeric expressions will be left as is, since these are already valid MIP expressions. Boolean

expressions will be converted into cnf prior to compilation, but not all cnf expressions are

compiled in the same way. Two compilers are needed. dlf expressions are compiled into

integer expressions, and conj expressions are compiled directly into a proposition. This

allows generating linear integer propositions from Boolean expressions. A single expression

compiler could be defined, but that would generate nonlinear expressions.

5.3.2.1 DLF Expression Compiler

Let e
dlf
7−→ emip be a judgement converting dlf expressions into mip expressions. Its definition

is motivated by the following decisions:

• literal expressions taking the value false and true correspond to numeric expres-

sions taking the value 0 and 1, respectively

• dlf expressions taking the value false and true correspond to numeric expressions

taking the value 0 and ≥ 1, respectively.

After giving the definition, we will prove that it adheres to these decisions. The definition

of e
dlf
7−→ emip is inductive on the form of e,

x
dlf
7−→ x

(5.27a)

true
dlf
7−→ 1

(5.27b)

false
dlf
7−→ 0

(5.27c)

e
dlf
7−→ e′

not e
dlf
7−→ 1 − e′

(5.27d)

e1
dlf
7−→ e′1 e2

dlf
7−→ e′2

e1 or e2
dlf
7−→ e′1 + e′2

(5.27e)

The first four rules are for literal forms. A variable x is left as is. But since its declared

type will also be compiled, it will take a [0, 1] value instead of a bool value. The following

lemmas prove that this compiler adheres to the decisions stated above.

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 76

5.3. COMPILING MP TO MIP

First, we define a valuation compiler, which will be needed in the lemmas. Let Ψ
val
7−→ Ψmip

be defined by

∅
val
7−→ ∅

(5.28)

Ψ
val
7−→ Ψmip

Ψ, x = r
val
7−→ Ψmip, x = r

(5.29)

Ψ
val
7−→ Ψmip

Ψ, x = true
val
7−→ Ψmip, x = 1

(5.30)

Ψ
val
7−→ Ψmip

Ψ, x = false
val
7−→ Ψmip, x = 0

(5.31)

Numeric assignments are left unchanged, and Boolean assignments are converted as in
dlf
7−→.

Lemma 5.3. Consider e literal, e
dlf
7−→ e′, and Ψ

val
7−→ Ψ′. The following are true:

1. If Ψ ` e ↘ true, then Ψ′ ` e′ ↘ 1

2. If Ψ ` e ↘ false, then Ψ′ ` e′ ↘ 0.

Proof. By induction on the form of e.

1. e is x. Then the values of e and e′ are given immediately by valuations Ψ and Ψ′. The

valuation compiler is defined such that true is replaced with 1, and false with 0.

2. e is true or false. The result is immediate from the second and third rules defining
dlf
7−→, which compile true to 1 and false to 0.

3. e is not e1. The fourth rule defining
dlf
7−→ applies. It converts not e1 to 1 − e′1 where

e1
dlf
7−→ e′1. Consider first that Ψ ` e1 ↘ true. By inductive hypothesis (IH), Ψ′ `

e′1 ↘ 1. If Ψ ` e1 ↘ true, then Ψ ` (not e1) ↘ false. Also, if Ψ′ ` e′1 ↘ 1,

then Ψ′ ` (1 − e′1) ↘ 0, giving the desired result. The argument for the case that

Ψ ` e1 ↘ false is analogous.

Lemma 5.4. Consider e dlf, e
dlf
7−→ e′, and Ψ

val
7−→ Ψ′. The following are true:

1. If Ψ ` e ↘ true, then Ψ′ ` e′ ↘ r , for some r ≥ 1

2. If Ψ ` e ↘ false, then Ψ′ ` e′ ↘ 0.

Proof. If e literal, then the result follows from Lemma 5.3. If not, only the final rule

defining
dlf
7−→ applies, which is for expressions of the form e1 or e2. The proof proceeds by

case on the value of e1 or e2.

1. Ψ ` (e1 or e2) ↘ true. This can only be if either Ψ ` e1 ↘ true or Ψ ` e2 ↘ true.

Consider that only the first is true. Then, by IH, Ψ′ ` e′1 ↘ r1, where r1 ≥ 1 and

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 77

5.3. COMPILING MP TO MIP

Ψ′ ` e′2 ↘ 0, which leads to the desired result that Ψ′ ` (e′1 + e′2) ↘ r, where r ≥ 1.

If the second were also true, then the value of the sum would only increase. Finally,

the situation is analogous if e2 were true and e1 either true or false.

2. Ψ ` (e1 or e2) ↘ false. This can only be if Ψ ` e1 ↘ false and Ψ ` e2 ↘ false.

By IH, Ψ′ ` e′1 ↘ 0 and Ψ′ ` e′2 ↘ 0. Thus, Ψ′ ` (e′1 + e′2) ↘ 0, as desired.

5.3.2.2 CONJ Expression Compiler

Next we define a compiler for conj expressions, which are of the form e1 and e2. A straight-

forward idea for converting e1 and e2 to an integer expression is to replace and with multi-

plication ∗, just as or was mapped to +. This naive strategy however leads to nonlinear

expressions. Linear propositions can be obtained instead by compiling e1 and e2 directly to

a proposition, rather than to an expression.

Let e
conj
7−→ cmip be a judgement converting conj expressions into MIP propositions. Its

definition is
{

∅ ` isTrue ej
prop
7−→ cj

}2

j=1

e1 and e2
conj
7−→ c1 ∧ c2

(5.32)

The preconditions make use of the proposition compiler to be defined in the next section.

The central idea here is to transform Boolean conjunction and into propositional conjunction

∧. Boolean expressions ej are treated as propositions isTrue ej , these are compiled with

the proposition compiler, and the propositional conjunction of the resulting propositions is

the final result.

5.3.3 Proposition Compiler

Let Υ ` c
prop
7−→ cmip be a proposition compiler. Unlike expressions, compiling a proposition

requires knowledge of the variables’ domains (only because of disjunctive propositions). The

precondition Υ ` c DisjVarsBounded must be satisfied. The definition of the proposition

compiler is inductive on the form of c,

Υ ` T
prop
7−→ T

(5.33a)

Υ ` F
prop
7−→ F

(5.33b)

e y e′ e′ dlf e′
dlf
7−→ e′′

Υ ` isTrue e
prop
7−→ e′′ ≥ 1

(5.33c)

e y e′ e′ conj e′
conj
7−→ c′

Υ ` isTrue e
prop
7−→ c′

(5.33d)

Υ ` e1 = e2
prop
7−→ e1 = e2

(5.33e)

Υ ` e1 ≤ e2
prop
7−→ e1 ≤ e2

(5.33f)

Υ ` c1 ∨ c2
disj
7−→ c′

Υ ` c1 ∨ c2
prop
7−→ c′

(5.33g)

Υ ` c1
prop
7−→ c′1 Υ ` c2

prop
7−→ c′2

Υ ` c1 ∧ c2
prop
7−→ c′1 ∧ c′2

(5.33h)

ρ
rtype
7−→ ρ′ Υ, x : ρ′ ` c

prop
7−→ c′

Υ ` ∃x : ρ � c
prop
7−→ ∃x : ρ′ � c′

(5.33i)

Boolean propositions are first converted into cnf. A cnf expression will be either dlf

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 78

5.3. COMPILING MP TO MIP

or conj. The first rule handles the dlf case. Truth corresponds to a positive integer value.

So the compiled proposition is required to be greater than or equal to 1. The conj case

calls
conj
7−→, which produces a proposition directly.

Inequalities and equations are already in MIP form, so no work is required to compile

them. Compilation of a disjunctive proposition is sufficiently complex to justify packaging it

into a separate judgement
disj
7−→, discussed next. Conjunctive propositions simply recurse into

their sub-propositions. Similarly for existential propositions, but the introduced variable

must be added to the context.

5.3.4 Disjunctive Proposition Compiler

Our disjunctive proposition compiler is motivated by the convex hull method, discussed in

Appendix A. When the disjuncts are each a conjunction of linear equations and inequalities

on the reals, it is the convex hull method. It is so only for each disjunction separately. When

there are multiple disjunctions, i.e. a conjunction of disjunctions, it does not produce the

convex hull overall.

Several operations are involved in the convex hull method. Constants are multiplied by

binary variables. New disaggregated variables must be created. These must replace the

original variables they correspond to in each disjunct. Propositions corresponding to known

bounds on a variable must be inserted into disjuncts. Equations relating the original and

disaggregated variables must be produced. We first define a few auxiliary judgements to

assist in the overall definition.

Let Υ ` c(c′ be a judgement adding to c bounding propositions for all variables free

in c, returning the result as c′. Its definition is

{xj : ρj w cj}
m
j=1

Υ ` c((c1 ∧ · · · ∧ cm ∧ c)
(5.34)

where FV (c) = {x1, . . . , xm} and Υ (xj) = ρj for j = 1, . . . ,m. The x : ρ w c relation was

defined in Section 4.4. It provides a proposition c corresponding to the bounds declared by

ρ.

Let e~ e1 ↪→ e2 be a judgement that multiplies e to all constant terms in e1, producing

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 79

5.3. COMPILING MP TO MIP

e2. Both e and e1 must be numeric expressions. The definition is inductive on e1,

e~ x ↪→ x
(5.35a)

e~ r ↪→ e ∗ r
(5.35b)

e~ e1 ↪→ e2

e~−e1 ↪→ −e2
(5.35c)

e~ e1 ↪→ e′1 e~ e2 ↪→ e′2
e~ (e1 op e2) ↪→ (e′1 op e′2)

for op ∈ {+,−} (5.35d)

e~ (e1 ∗ e2) ↪→ e ∗ (e1 ∗ e2)
if FV (e1 ∗ e2) = ∅ (5.35e)

e~ (x1 ∗ e2) ↪→ (x1 ∗ e2)
(5.35f)

e~ (e1 ∗ x2) ↪→ (e1 ∗ x2)
(5.35g)

e~ e2 ↪→ e′2
e~ (e1 ∗ e2) ↪→ (e1 ∗ e′2)

if FV (e1) 6= ∅ (5.35h)

e~ e1 ↪→ e′1
e~ (e1 ∗ e2) ↪→ (e′1 ∗ e2)

if FV (e2) 6= ∅ (5.35i)

The result of e~x is x. Since x is not a constant, it does not get multiplied by the given

expression. e ~ r gives e ∗ r since r is a constant. For negation, addition, and subtraction

expressions, the procedure simply recurses into the sub-expressions. The result of e~(e1 ∗ e2)

depends on whether e1 ∗ e2 has any free variables. If it does not, e1 ∗ e2 is a constant term

and it is multiplied by e. If it does, e1 ∗ e2 is a non-constant term and is returned unaltered.

Let e~ c1 ↪→ c2 be an analogous judgement for a proposition. Its definition is inductive

on c1,

e~ T ↪→ T
(5.36a)

e~ F ↪→ F
(5.36b)

e~ e1 ↪→ e2

e~ (isTrue e1) ↪→ (isTrue e2)
(5.36c)

e~ e11 ↪→ e21 e~ e12 ↪→ e22

e~ (e11 op e12) ↪→ (e21 op e22)
for op ∈ {=,≤} (5.36d)

e~ c11 ↪→ c21 e~ c12 ↪→ c22

e~ (c11 op c12) ↪→ (c21 op c22)
for op ∈ {∨,∧} (5.36e)

e~ c1 ↪→ c2

e~ (∃x : ρ � c1) ↪→ (∃x : ρ � c1)
where x 6∈ FV (e) (5.36f)

In the last rule, the existential proposition must be α-converted if x ∈ FV (e). Other rules

simply recurse into their nested expressions and propositions.

Finally, let Υ ` c
disj
7−→ cmip be a disjunctive proposition compiler. Proposition c must be

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 80

5.4. RESULTS

a disjunctive proposition cA ∨ cB . Of course Υ ` c DisjVarsBounded is a precondition of

this judgement. The definition is

{

Υ ` cj
prop
7−→ c′j

}

j∈{A,B}
Υ

ctxt
7−→ Υ′

{
Υ′ ` c′j (c′′j

}

j∈{A,B}

{

yj ~
{
~xj/~x

}
c
′′

j ↪→ c′′′j

}

j∈{A,B}

Υ ` (cA ∨ cB)
disj
7−→

(

∃~xA : ~ρ � ∃~xB : ~ρ � ∃yA : [0, 1] � ∃yB : [0, 1] �
(
~x = ~xA + ~xB

)
∧
(
yA + yB = 1

)
∧ (c′′′A ∧ c′′′B)

) (5.37)

The notation used assumes the context Υ is x1 : ρ1, . . . , xm : ρm. For each xj , two disag-

gregated variables xA
j and xB

j are created, but these must not be free in cA ∨ cB . Also, two

binary variables yA and yB are created, such that the chosen names are not free in cA ∨ cB

and are also unique from the xA
j ’s and xB

j ’s.

In the first line of the preconditions, the disjuncts are themselves compiled, producing

the MIP propositions c′A and c′B, and the context is compiled. In the second line, bounding

constraints are added to each disjunct. Then, each of the jth disjuncts is disaggregated by

performing the substitution
{
~xj/~x

}
c
′′

j . Finally, constants are multiplied by the binary yj .

The results of these operations are used to produce the final proposition. The disag-

gregated variables are related to the original by the equation ~x = ~xA + ~xB, which is an

abbreviation for the conjunction of equations xj = xA
j + xB

j for j = 1, . . . ,m. The binary

variables must sum to 1. Finally, the disjunctive proposition cA ∨ cB is replaced with the

conjunctive proposition c′′′A ∧ c′′′B .

5.3.5 Program Compiler

Expression and proposition compilation is where all the work is. Compiling a program is

now straightforward. Let p
prog
7−→ pmip be a program compiler. It is defined only for programs

p satisfying p mp and p DisjVarsBounded. The definition is

{

ρj
rtype
7−→ ρ′j

}m

j=1
x1 : ρ1, . . . , xm : ρm ` c

prop
7−→ c′

δx1:ρ1,...,xm:ρm
{e | c}

prog
7−→ δx1:ρ′

1
,...,xm:ρ′

m
{e | c′}

(5.38)

Since the objective e must be of type real, it is already in MIP form and need not be

compiled.

5.4 Results

The compiler consists principally of two features: conversion of Boolean and disjunctive

propositions. These are demonstrated in the following examples.

Example 5.1 Consider the program

1 var x:real

2

3 min x subject_to

4

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 81

5.4. RESULTS

5 exists y1:bool . exists y2:bool . exists y3:bool .

6 isTrue ((y1 and y2) implies y3) and y1

A dummy objective has been chosen because we are concerned only with the Boolean proposition

in this example. In the concrete syntax, e1 implies e2 is provided but this is converted into

the expression not e1 or e2 immediately. First, we verify p1 mp, which is satisfied. Also,

p1 DisjVarsBounded is trivially satisfied because there are no disjunctive constraints.

Then, the compiler p1
prog
7−→ p2 is applied, and the returned program is

1 var x:real

2

3 min x subject_to

4

5 exists y1:[0,1] . exists y2:[0,1] . exists y3:[0,1] .

6 ((1 - y1) + (1 - y2)) + y3 >= 1,

7 y1 >= 1

Boolean variables have been converted into [0, 1] variables. The conjunctive normal form is

derived in the following sequence

B ((y1 and y2) implies y3) and y1

B ((not (y1 and y2)) or y3) and y1

B ((not y1 or not y2) or y3) and y1

This expression is in CNF, and is CONJ. So the compiler e
conj
7−→ cmip gets applied to produce the

program shown.

Example 5.2 Now consider a disjunctive proposition,

1 var x:real

2 var w:real

3

4 min x + w subject_to

5 (x <= w) disj (x >= w + 4.0)

Variable x either has to be less than or greater than some function of w. The program satisfies

p1 mp, but p1 DisjVarsBounded fails. The following error messages are printed,

ERROR: variable in disjunct must be bounded

variable at 5.7: w

is of unbounded type at 2.7-2.10: real

ERROR: variable in disjunct must be bounded

variable at 5.2: x

is of unbounded type at 1.7-1.10: real

Variables x and w must have bounds explicitly declared. These must be obtained from an

understanding of the physical system. We change the declaration x:real to x:<10.0, 100.0>,

and w:real is changed to w:<2.0, 50.0>.

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 82

5.4. RESULTS

Now, p1 DisjVarsBounded also passes. Thus, we are able to apply the compiler, which

produces the pure mixed-integer program1

1 var x:<10.0, 100.0>

2 var w:<2.0, 50.0>

3

4 min x + w subject_to

5

6 exists y1:[0, 1]

7 exists y2:[0, 1]

8 exists x1:<10.0, 100.0>

9 exists x2:<10.0, 100.0>

10 exists w1:<2.0, 50.0>

11 exists w2:<2.0, 50.0>

12 w = w1 + w2,

13 x = x1 + x2,

14 y1 + y2 = 1,

15

16 10.0 * y1 <= x1,

17 x1 <= 100.0 * y1,

18 2.0 * y1 <= w1,

19 w1 <= 50.0 * y1,

20 x1 <= w1,

21

22 10.0 * y2 <= x2,

23 x2 <= 100.0 * y2,

24 2.0 * y2 <= w2,

25 w2 <= 50.0 * y2,

26 x2 >= w2 + 4.0 * y2

Several new variables are generated. Since these are not used in the objective, they are introduced

locally with existential quantifiers. Lines 12–13 relate the new disaggregated variables to the

original x and w. On line 14, the sum of the binary variables is required to be equal to 1. Lines

16–20 represent the disaggregation of the first disjunct and lines 22–26 of the second. In each,

bounding constraints have been added.

The benefits of a language with disjunctive propositions is evident. The single disjunctive

proposition is far easier to understand and declare than the equivalent MIP propositions. About

20 lines of code in the MIP language are required instead of a single disjunctive proposition.

The disjunction of the previous example involves only inequalities on reals. Thus, the

MIP constraints generated by the compiler represent the convex hull of the disjunction. As

reviewed in Appendix A, this method was proposed in the early 1970’s and has been widely

used since. However, only with our type theoretic treatment of MP have we been able to

automate this procedure. The automation is a direct consequence of the fact that the set

relation p1
prog
7−→ p2 is a more precise definition than has been previously provided.

1Due to formatting reasons, the output of our software is not easily legible. The ouput we are showing has
been modified in minor ways: unnecessary parentheses have been deleted, and indenting has been adjusted.

CHAPTER 5. COMPILING MATHEMATICAL PROGRAMS 83

Chapter 6

Index Sets

In Chapter 4, we presented a logical formulation of mathematical programs (MPs). One of

the motives for this was that it leads directly to a computer language for expressing MPs,

in contrast to matrix-based definitions. The resulting language did not however include an

essential feature—index sets—which are used in virtually every MP model.

Indexing can be discussed independently of its application to mathematical program-

ming. It can be formulated as a separate logic with its own syntax and semantics. The

goal of this chapter is to provide a language in which a rich variety of index sets can be

declared in intuitive ways. In the next chapter, the theories of Chapter 4 and this one will

be combined to define indexed MPs.

The indexing language is also a novel application of type theory because it has a feature

rarely found in other languages—all types are finite. This allows us to define the type system

semantically. This contrasts from the syntactically defined type system of MP. There, we

first defined the syntax, then the type system, and then the semantics. The MP type system

did not require any knowledge about the semantics of the language. The expression 2 + 3

was defined to be a numeric expression because 2 and 3 are, and that is what + expects.

That the expression evaluates to 5 was not relevant.

In the indexing language, a construct will be declared well-formed precisely when it has

meaning. The expression 2 +3 exists because it means 5. The expression 2 + true does not

exist because it has no meaning. An open expression x + 3 is well-formed if it has meaning

for all values of x. In the MP language, this could be an uncountable number of values, but,

in the indexing language, x can only take a finite number of values. Thus, we will be able

to provide an algorithmic implementation of the semantics.

This chapter also begins with a definition of the language’s syntax, but then we imme-

diately define the semantics. Finally, the semantics are employed to define the type system.

The overall formulation is in the style of Martin-Löf’s (1984) intuitionistic type theory.

6.1 Syntax

The principal construct we are after in the indexing language is an index set, which are

the types of this language. Indexing is a dependent type theory because expressions are

84

6.1. SYNTAX

used within types. For example, the type [1, i + 1] represents the set of all integers from 1

to i + 1. Furthermore, types are themselves categorized into kinds. An expression is of a

certain type, and a type is of a certain kind. We first provide the full syntax of the language,

followed by basic meta-operations on the syntax.

6.1.1 Full Forms

6.1.1.1 Expressions

Let the expressions of the indexing language be defined by

ε ::= x | l | k

| (ε1, . . . , εm) | ε.k

| −ε | ε1 + ε2 | ε1 − ε2 | ε1 ∗ ε2

| case ε of {lj ⇒ εj}
m
j=1 | case ε of {kj ⇒ εj}

m
j=1 (6.1)

Any variable x is an expression. Next, constants of two forms are provided: the constant

l stands for any label, which are denoted with single quotes, e.g. ‘A’, ‘B’, and k represents

any integer constant.

Tuples (ε1, . . . , εm) can be formed from m expressions. Projection ε.k gives the kth

element of a tuple. For example, (1, ‘A’) .2 is equal to ‘A’. The ε in ε.k need not explicitly

be in a tuple form. It could be another expression that evaluates to a tuple. A tuple can

contain m = 0 or ≥ 2 elements. When, m = 0, the tuple is (), a special expression known

as unit. In mathematical texts, unit is sometimes denoted as a bold number one 1.

Next, the standard arithmetic operators are available. These are only valid on integer

expressions, but that is a matter of type checking, discussed later.

The case constructs can be thought of as generalized tables. The notation {lj ⇒ εj}
m
j=1

is meta-language syntax denoting a list of m constructs of the form lj ⇒ εj . This is

more compact than writing {l1 ⇒ ε1, . . . , lm ⇒ εm}. Also, instead of commas, we use a

vertical bar | to separate elements of this list. The ε in the case construct is called the case

object, each lj is called a handle, and each εj is called a branch. There are two forms of

case expressions. They are similar except that one’s handles are labels and the other’s are

integers.

For example, the expression

case i of ‘A’ ⇒ 4 | ‘B’ ⇒ 3 | ‘C’ ⇒ j + 2

represents a one-dimensional table. If i evaluates to ‘A’, the whole case expression evaluates

to 4. Multi-dimensional tables are built up by making the branches themselves be case

expressions.

CHAPTER 6. INDEX SETS 85

6.1. SYNTAX

6.1.1.2 Types

Expressions are categorized into types, which are the index sets we strive for. Types are

defined by the syntax

σ ::= {l1, . . . , lm} | [εL, εU] | x1 : σ1 × · · · × xm : σm

| case ε of {lj ⇒ σj}
m
j=1 | case ε of {kj ⇒ σj}

m
j=1

| λx � σ | σ ε

| σ :: κ (6.2)

Two basic kinds of index sets are provided. A set of the form {l1, . . . , lm} is an enu-

merated type, its elements are explicitly stated labels. Label sets are required to contain at

least one element, i.e. m ≥ 1. The second kind of index set is an integer interval [εL, εU].

The type [1, 10] represents the integers from 1 through 10. However, the bounds can be

any general expression. The type [i, j + 1] represents all integers from i through j + 1. The

actual elements of this set depend on the values of i and j. This is what makes the indexing

language a dependent type theory. The remaining types are built from these two basic

types.

The type x1 : σ1 × · · · × xm : σm is called a dependent product, a generalization of

Cartesian products. The x’s are optional. Elements of the set [1, 2]× [1, 3] are pairs. There

are 2 ∗ 3 = 6 elements in this set,

[1, 2] × [1, 3] = {(1, 1) , (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3)}

In many physical systems, the elements of the second set actually depend on what the first

element is. The set x : [1, 2] × [1, x] has only three elements,

x : [1, 2] × [1, x] = {(1, 1) , (2, 1) , (2, 2)}

When the first element is 1, the second element can only take values from [1, 1]. When the

first element is 2, the second set is [1, 2]. Examples at the end of this chapter demonstrate

how such sets arise naturally in many applications.

It is possible to have a product of zero sets. In this case, the notation x1 : σ1×· · ·×xm :

σm does not degenerate into anything visible. Let unit denote the dependent product type

when m = 0. This set contains only the single element ().

The case types are similar to case expressions. They represent generalized tables, but

the entries of the table are types. This allows conveniently picking different index sets

depending on the value of ε. The type

case ε of 1 ⇒ {‘A’, ‘B’} | 2 ⇒ [1, 10]

is equivalent to {‘A’, ‘B’} if ε is 1, and equivalent to [1, 10] if ε is 2.

Finally, we provide functions. Functions are the most basic abstraction mechanism a

CHAPTER 6. INDEX SETS 86

6.1. SYNTAX

programming language can provide. They allow commonly occurring patterns to be repre-

sented in an abstract way, and applying them produces specific instances of that pattern.

A function is represented by the notation λx � σ. The function argument is x and the body

of the function is σ. For example, we could define a function f as

λx � case x of 1 ⇒ {‘A’, ‘B’} | 2 ⇒ [1, 10] (6.3)

This denotes the function that returns {‘A’, ‘B’} when applied to 1, and returns [1, 10] when

applied to 2.

The type σ ε denotes application of a function σ to an expression ε. In common practice,

function arguments are enclosed in parentheses. So we would write σ (ε). In fact, the

parentheses are superfluous, and they are usually omitted in logical syntax. The type f 3 is

of the form σ ε. The result of the application would be {‘A’, ‘B’}.

Mathematics as practiced in the sciences and engineering does not employ the λ notation,

but it is required for functions to be treated properly. Informally, we would write

f (x) = case x of 1 ⇒ {‘A’, ‘B’} | 2 ⇒ [1, 10]

to define a function called f . This is odd because it is impossible to refer to the function

without referring to its name. The exact nature of this statement is clarified by the λ

notation. We are giving the name f to the function defined in (6.3).

Functions have only a single argument. Multiple arguments are simulated by passing

a single argument that happens to be a tuple. For example, let g be the function λx �

[x.1, x.2 + 1]. Then, we could write the application g (2, 5), which is equal to the set [2, 6].

This appears to be a function with two arguments, but it is not. The single argument is the

tuple (2, 5).

In the discussion, we have been giving names such as f and g to functions. Actually, the

syntax defined thus far does not provide a mechanism for doing this. In the core theory, it

is the presence of functions that matters, not their names. Nonetheless, eventually this is

necessary; the main benefit of functions is that they can be named and reused. The concrete

syntax, discussed in Appendix C, provides a general mechanism for naming any syntactic

construct.

Various other notational conveniences are also discussed there. One may prefer to write

parentheses around the argument even when it is not a tuple, and this is allowed. Finally,

functions can appear to take multiple arguments; instead of λx � [x.1, x.2 + 1], one can write

λ (x1, x2) � [x1, x2 + 1]. These are only features of the concrete syntax, and we will not

employ them except in examples at the end of the chapter.

The final type form is “σ :: κ”, which is called kind ascription. We explain it after

introducing kinds in the next section.

6.1.1.3 Kinds

The type function λx � σ is not a proper type. It does not represent an index set. It has

no elements, or rather, the question of what its elements are should never be asked. It

however might generate an index set when applied. Some types, such as λx � σ, can be

CHAPTER 6. INDEX SETS 87

6.1. SYNTAX

applied. Others, such as [1, 10], cannot be. Determining whether a programmer has not

inadvertently applied a non-function requires knowing whether the type being applied is a

function or not. Kinds provide this information.

The kinds in the indexing language are

κ ::= IndexSet | x : σ ⇒ κ (6.4)

IndexSet represents the kind of all index sets. The singular is used for the same reason

that the data type real in the MP logic is called real and not reals. We say 3.4 is of type

real or that 3.4 is a real, not 3.4 is an element of the reals. Similarly, {‘A’, ‘B’} is an

IndexSet, which means IndexSet contains index sets.

x : σ ⇒ κ denotes a dependent function kind, where the x is optional. It contains

function types. For example, the function λx � [x, x + 3] is of kind [1, 2] ⇒ IndexSet, which

is the set of all functions that, when applied to an element of [1, 2], return an index set.

The function λx � [x, x + 3] also belongs to other kinds, e.g. [5, 10] ⇒ IndexSet, as will be

defined by the type system in Section 6.3.

This example does not illustrate dependency. In general, a function’s codomain might

depend on the particular argument it is applied to. The dependent function kind

x : [2, 3] ⇒ ([1, x] ⇒ IndexSet)

represents the set of all functions which, when applied to 2, return an element in [1, 2] ⇒

IndexSet, and which, when applied to 3, return an element in [1, 3] ⇒ IndexSet. What

function could possibly behave in this way? An example is

λx � case x of

2 ⇒ λx � case x of 1 ⇒ {‘A’, ‘B’} | 2 ⇒ {‘C’, ‘D’}

| 3 ⇒ λx � case x of 1 ⇒ [1, 10] | 2 ⇒ [11, 20] | 3 ⇒ [21, 30]

Unlike in MPs, the types of the indexing language can be rather complex. Sometimes it

might not even be clear that a type σ is of the intended kind. It is useful to allow a kind to

be ascribed to a type. This feature is provided in the type form “σ :: κ”, which checks that

σ is indeed of the kind κ. For example, one might follow a complex σ with the ascription

IndexSet to verify that σ is indeed an index set.

6.1.1.4 Context

Let ∆ be a context providing variables’ types,

∆ ::= ∅ | ∆, x : σ (6.5)

A context is a possibly empty list of elements of the form x : σ, which means x is of

type σ. It is assumed that variable names in the context are unique. Unlike in the MP

context Γ, the order of items matters because a type might involve a variable. The context

CHAPTER 6. INDEX SETS 88

6.1. SYNTAX

x1 : [1, 10] , x2 : [1, x1] means the type of x2 depends on the value that x1 takes. In contrast,

the reverse context x2 : [1, x1] , x1 : [1, 10] is ill-formed because x1 in [1, x1] has not yet been

declared.

6.1.2 Free Variables

6.1.2.1 Free Variables of Expression

Let FV (ε) denote the free variables of an expression. Its definition is by case on the form

of ε,

1. FV (x) = {x}

2. FV (l) = ∅

3. FV (k) = ∅

4. FV ((ε1, . . . , εm)) = ∪m
j=1FV (εj)

5. FV (ε.k) = FV (ε)

6. FV (−ε) = FV (ε)

7. FV (ε1 op ε2) = FV (ε1) ∪ FV (ε2), where op ∈ {+,−, ∗}

8. FV
(

case ε of {lj ⇒ εj}
m
j=1

)

= FV (ε) ∪
(
∪m

j=1FV (εj)
)

9. FV
(

case ε of {kj ⇒ εj}
m
j=1

)

= FV (ε) ∪
(
∪m

j=1FV (εj)
)

Let ε closed mean FV (ε) = ∅.

6.1.2.2 Free Variables of Type

1. FV ({l1, . . . , lm}) = ∅

2. FV ([εL, εU]) = FV (εL) ∪ FV (εU)

3. (a) FV (unit) = ∅

(b) FV (x1 : σ1 × · · · × xm : σm) =

FV (σ1) ∪ (FV (σ2) \ {x1}) ∪ · · · ∪ (FV (σm) \ {x1, . . . , xm−1}), where m ≥ 2

4. FV
(

case ε of {lj ⇒ σj}
m
j=1

)

= FV (ε) ∪
(
∪m

j=1FV (σj)
)

5. FV
(

case ε of {kj ⇒ σj}
m
j=1

)

= FV (ε) ∪
(
∪m

j=1FV (σj)
)

6. FV (λx � σ) = FV (σ) \ {x}

7. FV (σ ε) = FV (σ) ∪ FV (ε)

8. FV (σ :: κ) = FV (σ) ∪ FV (κ)

CHAPTER 6. INDEX SETS 89

6.1. SYNTAX

In the dependent product type x1 : σ1 × · · · × xm : σm, each xj is visible only in types

further down the list. Consider

i : [1, i] × [1, i + 1]

in which there are three i’s. The second i is free. Only the third i corresponds to the first.

Let σ closed mean FV (σ) = ∅.

6.1.2.3 Free Variables of Kind

1. FV (IndexSet) = ∅

2. FV (x : σ ⇒ κ) = (FV (κ) \ {x}) ∪ FV (σ)

Let κ closed mean FV (κ) = ∅.

6.1.3 Substitution

Variables occur in every construct because the indexing language is a dependent type theory.

Let a generically refer to a construct ε, σ, or κ. Then {ε/x} a is the substitution of ε for

x in a. Also let {ε1/x1, . . . , εm/xm} a denote the simultaneous substitution of each εj for

each xj into a. The definitions for substitution are provided in the next sections.

6.1.3.1 Substitution Into Expression

The definition of {ε/x} ε′ is

1. {ε/x}x′ =

{

x′ if x 6= x′

ε if x = x′

2. {ε/x} l = l

3. {ε/x} k = k

4. {ε/x} (ε1, . . . , εm) = ({ε/x} ε1, . . . , {ε/x} εm)

5. {ε/x} (ε′.k) = ({ε/x} ε′) .k

6. {ε/x} (ε1 op ε2) = {ε/x} ε1 op {ε/x} ε2, where op ∈ {+,−, ∗}

7. {ε/x}
(

case ε′ of
{
lj ⇒ ε′′j

}m

j=1

)

= case {ε/x} ε′ of
{
lj ⇒ {ε/x} ε′′j

}m

j=1

8. {ε/x}
(

case ε′ of
{
lj ⇒ ε′′j

}m

j=1

)

= case {ε/x} ε′ of
{
lj ⇒ {ε/x} ε′′j

}m

j=1

6.1.3.2 Substitution Into Type

Substitution into types {ε/x}σ is given by the rules

1. {ε/x} {l1, . . . , lm} = {l1, . . . , lm}

2. {ε/x} [εL, εU] = [{ε/x} εL, {ε/x} εU]

CHAPTER 6. INDEX SETS 90

6.1. SYNTAX

3. (a) {ε/x} (x1 : σ1 × · · · × xm : σm) = x1 : {ε/x}σ1 × {ε/x} (x2 : σ2 × · · · × xm : σm)

if

x 6= x1

(b) {ε/x} (x1 : σ1 × · · · × xm : σm) = x1 : {ε/x}σ1 × x2 : σ2 × · · · × xm : σm if

x = x1

4. {ε/x}
(

case ε′ of {lj ⇒ σj}
m
j=1

)

= case {ε/x} ε′ of {lj ⇒ {ε/x}σj}
m
j=1

5. {ε/x}
(

case ε′ of {kj ⇒ σj}
m
j=1

)

= case {ε/x} ε′ of {kj ⇒ {ε/x}σj}
m
j=1

6. (a) {ε/x} (λx′ � σ) = λx′ � {ε/x}σ if

x 6= x′

(b) {ε/x} (λx′ � σ) = λx′ � σ if

x = x′

7. {ε/x} (σ ε′) = {ε/x}σ {ε/x} ε′

8. {ε/x} (σ :: κ) = {ε/x}σ : {ε/x}κ

Rule 3.a for the dependent product type abuses notation. As written, it converts an

m-ary product into a 2-ary product, but that is not the intention. Substitution into the

2nd through mth types should be performed as written. But then, the result should be

unwrapped to reconstruct the original m-ary product.

6.1.3.3 Substitution Into Kind

Finally, the definition of substitution into kinds {ε/x}κ is

1. {ε/x} IndexSet = IndexSet

2. (a) {ε/x} (x′ : σ ⇒ κ) = (x′ : {ε/x}σ ⇒ {ε/x}κ) if

x 6= x′

(b) {ε/x} (x′ : σ ⇒ κ) = (x′ : {ε/x}σ ⇒ κ) if

x = x′

6.1.3.4 Substitution Into Context

Contexts contain types, which can involve variables. Thus, it is possible to substitute for

variables in a context. Let {ε/x}∆ denote this operation. It is defined by case on the form

of a context,

1. {ε/x} ∅ = ∅

2. {ε/x} (∆, x′ : σ) = {ε/x}∆, (x′ : {ε/x}σ)

CHAPTER 6. INDEX SETS 91

6.1. SYNTAX

There is no problem in substituting for x into a context that contains x. As an example,

{y + 1/x} (y : [1, 3] , x : [1, 10] , z : [1, x])

results in the context

y : [1, 3] , x : [1, 10] , z : [1, y + 1] .

6.1.4 Canonical Forms

Canonical forms are a subset of the syntax. It refers to those forms which are considered

irreducible in their outermost form.

6.1.4.1 Canonical Expressions

Let ε canonical mean expression ε is canonical. Its definition is

l canonical
(6.6a)

k canonical
(6.6b)

(ε1, . . . , εm) closed

(ε1, . . . , εm) canonical
(6.6c)

Canonical expressions are also called values or constants. Values are important enough to

justify a special notation. Let η refer to an expression ε such that ε canonical. By our

definition the tuple (2 + 1, 3 + 5) is canonical. Its sub-expressions can be reduced, but its

outermost form will remain a tuple. Canonicity of tuples could require that each of its

elements are canonical, but that does affect any results.

6.1.4.2 Canonical Types

Let σ canonical mean type σ is canonical. The rules defining this judgement are

{l1, . . . , lm} canonical
(6.7a)

[εL, εU] closed

[εL, εU] canonical
(6.7b)

x1 : σ1 × · · · × xm : σm closed

x1 : σ1 × · · · × xm : σm canonical
(6.7c)

λx � σ closed

λx � σ canonical
(6.7d)

All label sets are canonical. Integer intervals, products, and type functions are canonical if

they have no free variables. The case types and application forms are not canonical. They

could be reduced to one of the above forms, given values for their free variables.

We mentioned that canonicity of tuples could require the sub-expressions to be canonical.

Similarly, for the interval type. However, there is no choice with product types and functions.

CHAPTER 6. INDEX SETS 92

6.2. SEMANTICS

The function λx � [1, x + 1] contains the non-canonical type [1, x + 1] within it. There is no

way to reduce the function further because x is of unknown value. Judgements on canonical

forms are thus mutually inductive with those on non-canonical forms.

6.1.4.3 Canonical Kinds

The definition of κ canonical is

IndexSet canonical
(6.8a)

x : σ ⇒ κ closed

x : σ ⇒ κ canonical
(6.8b)

Closed and canonical kinds happen to be the same.

6.2 Semantics

The semantics are defined as in the MP language. We define the relationship between

closed and canonical forms, and the meaning of open forms is with respect to a valuation.

Discussions of truth do not enter here because there are no propositions.

6.2.1 Expression Evaluation

Given ε1 closed and ε2 canonical, ε1 ↘ ε2 means ε1 evaluates to ε2. Its definition is

inductive on the form of ε1,

l ↘ l
(6.9a)

k ↘ k
(6.9b)

(ε1, . . . , εm) ↘ (ε1, . . . , εm)
(6.9c)

ε ↘ (ε1, . . . , εm) εk ↘ ε′

ε.k ↘ ε′
where k ∈ {1, . . . ,m} (6.9d)

ε ↘ k

−ε ↘ −k
(6.9e)

ε1 ↘ k1 ε2 ↘ k2

ε1 op ε2 ↘ k
where k1 op k2 = k, for op ∈ {+,−, ∗} (6.9f)

ε ↘ lk εk ↘ ε′

case ε of {lj ⇒ εj}
m
j=1 ↘ ε′

where lk ∈ {l1, . . . , lm} (6.9g)

ε ↘ k εk ↘ ε′

case ε of {kj ⇒ εj}
m
j=1 ↘ ε′

where k ∈ {k1, . . . , km} (6.9h)

Labels, integers, and tuples are already canonical. Evaluation of a projection ε.k requires

ε to evaluate to a tuple (ε1, . . . , εm) because a tuple is the only canonical form that can be

projected. The kth element εk must itself be evaluated to obtain a canonical form. The

CHAPTER 6. INDEX SETS 93

6.2. SEMANTICS

arguments to arithmetic operators must evaluate to integers. The final result is obtained

by employing integer addition in the meta-language.

In the case constructs, the case object ε must evaluate to one of the handles. Consider

case ε of ‘A’ ⇒ 4 | ‘B’ ⇒ 3 | ‘C’ ⇒ 2

The case object is ε and the handles are ‘A’, ‘B’, and ‘C’. If ε evaluates to say ‘D’ or an

integer k, then there is no way to evaluate the expression. If it evaluates to one of the

handles, then the entire expression is equal to the branch for that handle.

6.2.2 Type Evaluation

Given σ1 closed and σ2 canonical, σ1 ↘ σ2 means σ1 evaluates to σ2. Its definition is

{l1, . . . , lm} ↘ {l1, . . . , lm}
(6.10a)

[εL, εU] ↘ [εL, εU]
(6.10b)

x1 : σ1 × · · · × xm : σm ↘ x1 : σ1 × · · · × xm : σm
(6.10c)

ε ↘ lk σk ↘ σ

case ε of {lj ⇒ σj}
m
j=1 ↘ σ

where lk ∈ {l1, . . . , lm} (6.10d)

ε ↘ k σk ↘ σ

case ε of {kj ⇒ σj}
m
j=1 ↘ σ

where k ∈ {k1, . . . , km} (6.10e)

λx � σ ↘ λx � σ
(6.10f)

σ ↘ λx � σ′ {ε/x}σ′ ↘ σ′′

σ ε ↘ σ′′
(6.10g)

σ ↘ σ′ κ ↘ κ′ `c σ′ :: κ′

σ :: κ ↘ σ′
(6.10h)

Label sets, integer intervals, and products are already canonical. Evaluation rules for

case types are motivated by the same reasons given for the analogous expression constructs.

Closed functions are already canonical. Function application σ ε requires σ to evaluate

to a function λx � σ′. Analogously to projection in expressions, this is correct because no

other canonical form can be applied. Performing the application is known as β-reduction.

It requires substituting the argument into the function body, viz {ε/x}σ′. The result must

itself be evaluated because it is only guaranteed to be closed, not canonical.

Evaluating a type that has been ascribed a kind requires that the ascription is valid.

The ascription is disregarded once this is checked.

CHAPTER 6. INDEX SETS 94

6.3. TYPE SYSTEM

6.2.3 Kind Evaluation

All closed kinds are canonical. Thus, evaluation of a kind κ1 ↘ κ2 is simply an identity

relation,

κ ↘ κ
(6.11)

6.2.4 Meaning of Open Forms

Let

Φ ::= ∅ | Φ, i = η (6.12)

be a valuation for index variables. The judgement Φ ` ε1 ↘ ε2 means the possibly open

expression e1 evaluates to the canonical expression e2, under the valuation Φ. Its definition

is

1. ∅ ` ε ↘ η if

ε ↘ η

2. Φ, x = η′ ` ε ↘ η if

Φ ` {η′/x} ε ↘ η

The corresponding judgements for types Φ ` σ1 ↘ σ2 and kinds Φ ` κ1 ↘ κ2 can be

defined analogously.

6.3 Type System

Three syntactic forms have been defined: full, closed, and canonical forms. In this section,

typing judgements, and some other judgements needed later, are defined for these forms

in turn. The majority of the work is in the judgements on canonical forms. The types of

non-canonical forms will be defined by interpreting their canonical form.

The definitions are mutually coupled, making it impossible to order the discussion such

that prerequisites have been covered. A notational convention will help to conceptually

understand the meaning of a judgement prior to its definition. Let `c J be a judgement

on canonical forms, where J involves one or more syntactic constructs. The corresponding

judgement on closed forms will be notated `q J and on full forms ∆ ` J . The context is

needed only for judgements on full forms because there are no free variables in closed or

canonical forms. Figure 6.1 shows how these three categories of judgements depend on each

other.

open

∆ ` J
closed

`q J
canonical

`c J
substitution evaluation

Figure 6.1: Judgement dependencies in a semantic type theory. A −→ B means definition
of judgement A may depend on judgement B. Open forms are closed by substituting the
possible values of variables. Closed forms are canonized by evaluating them.

CHAPTER 6. INDEX SETS 95

6.3. TYPE SYSTEM

6.3.1 Judgements on Canonical Forms

6.3.1.1 Well-Formed Canonical Kind

`c κ kind means κ is a canonical kind. Its definition is inductive on the form of κ,

`c IndexSet kind
(6.13a)

`q σ :: IndexSet x : σ ` κ kind

`c x : σ ⇒ κ kind
(6.13b)

The function kind x : σ ⇒ κ is well-formed only if σ is an index set. Elements of this kind

are type functions which take as input an expression and return a type. If an expression

is the input argument, the input space must be an index set because expressions can only

be of a type which is of kind IndexSet. The x can occur free in κ. The judgement on full

forms must be called with x : σ as the context.

6.3.1.2 Canonical Kind of Canonical Type

`c σ :: κ means σ is a canonical type of canonical kind κ, where `c κ kind is assumed. Its

definition is inductive on the form of σ,

`c {l1, . . . , lm} :: IndexSet
(6.14a)

`q εL ≤ εU

`c [εL, εU] :: IndexSet
(6.14b)

∅ ` σ1 :: IndexSet

x1 : σ1 ` σ2 :: IndexSet
...

x1 : σ1, . . . , xm−1 : σm−1 ` σm :: IndexSet

`c x1 : σ1 × · · · × xm : σm :: IndexSet
(6.14c)

x : σ ` σ′ :: κ′

`c (λx � σ′) :: (x : σ ⇒ κ′)
(6.14d)

All label sets are index sets. An integer interval is an index set only if its lower bound is

less than or equal to its upper bound. Otherwise, it is ill-formed. The dependent product

type is an index set only if each of its components is. Type σm must be checked in a context

containing all variables introduced in previous components. Finally, the type function λx �σ′

is of kind x : σ ⇒ κ′ if for all values that x can take in σ, we can check that σ′ is of kind κ′.

CHAPTER 6. INDEX SETS 96

6.3. TYPE SYSTEM

6.3.1.3 Canonical Type of Canonical Expression

`c ε : σ means ε is a canonical element of canonical type σ, where `c σ :: IndexSet is

assumed. Its definition is inductive on the form of ε,

`c l : {l1, . . . , lm}
if l ∈ {l1, . . . , lm} (6.15a)

`q εL ≤ k ` `q k ≤ εU

`c k : [εL, εU]
(6.15b)

`q ε1 : σ1 `q ε2 : {ε1/x1}σ2 · · · `q εm : {ε1/x1, . . . , εm−1/xm−1}σm

`c (ε1, . . . , εm) : (x1 : σ1 × · · · × xm : σm)
(6.15c)

A label l is of type {l1, . . . , lm} if the label is in the set. Multiple, indeed an infinity of, sets

satisfy this requirement. Thus, a label can be ascribed an infinity of types. In contrast, in

the MP logic, each expression had at most one type. Similarly, an integer k belongs to all

intervals whose lower bound is less than or equal to k and whose upper bound is greater

than or equal to k. A tuple (ε1, . . . , εm) belongs to a product type x1 : σ1 × · · · × xm : σm.

The second element ε2 must belong to {ε1/x1}σ2. In other words, the first element affects

what the second element can be.

6.3.1.4 Canonical Subtyping

Let `c σ1 ≤: σ2 mean canonical type σ1 is a subtype of canonical type σ2, where `c σ1 ::

IndexSet and `c σ2 :: IndexSet are assumed. If σ1 is a subtype of σ2, any expression of

type σ1 is also of type σ2. The definition of subtyping is

`c {l1, . . . , lm} ≤: {l′1, . . . , l
′
n}

if {l1, . . . , lm} ⊆ {l′1, . . . , l
′
n} (6.16a)

`q ε′L ≤ εL `q εU ≤ ε′U
`c [εL, εU] ≤: [ε′L, ε′U]

(6.16b)

∅ ` σ1 ≤: σ′
1

x1 : σ1 ` σ2 ≤: σ′
2

...

x1 : σ1, . . . , xm−1 : σm−1 ` σm ≤: σ′
m

`c (x1 : σ1 × · · · × xm : σm) ≤: (x1 : σ′
1 × · · · × xm : σ′

m)
(6.16c)

Subtyping of label sets relies on the meta-language notion of subsets. An interval is a

sub-interval of another if its lower bound is greater and upper bound less than the other’s.

Product types require each of their corresponding components to be subtypes. Firstly,

σ1 must be a subtype of σ′
1. The second precondition requires σ2 to be a subtype of σ′

2.

The question is in what context this must be true. Should it be x1 : σ1 or x1 : σ′
1? Both σ2

and σ′
2 potentially involve x1. In σ2, x1 can take any value in σ1, and in σ′

2, x1 can take any

value in σ′
1. The judgement needing to be checked involves both σ2 and σ′

2. Thus, the more

restrictive type for x1 must be chosen, which is σ1. Imagine if instead the precondition was

stated as x1 : σ′
1 ` σ2 ≤: σ′

2. Well, now for some values of σ′
1, σ2 is not even well-formed.

CHAPTER 6. INDEX SETS 97

6.3. TYPE SYSTEM

So the correct choice must be x1 : σ1. However, this then fails to consider some valid values

of x1 in σ′
2. Considering these additional values could only increase the elements in σ′

2, so

the check would not become invalidated.

The subtyping relation tells us which expressions can be substituted for others, without

causing a well-formed program to become ill-formed. For example, let σ1 = [2, 3] and

σ2 = [1, 4], and consider two expressions ε1 : σ1 and ε2 : σ2. Since σ1 is a subtype of σ2, it

is okay to replace ε2 with ε1. For example,

case ε2 of 1 ⇒ ‘A’ | 2 ⇒ ‘B’ | 3 ⇒ ‘C’ | 4 ⇒ ‘D’

is a well-formed expression; expression ε2 is of type [1, 4] and there is branch for each value

in [1, 4]. Imagine replacing ε2 with ε1. Expression ε1 can only take fewer values because its

type is a subtype of ε2’s. The expression remains well-formed because there is surely still

a branch for the fewer possible values of the case object. Said another way, if ε1 is of type

σ1, and σ1 is a subtype of σ2, then ε1 is also of type σ2.

6.3.1.5 Canonical Type Equivalence

Let `c σ1 ≡ σ2 :: κ mean canonical type σ1 is equivalent to canonical type σ2, where

`c κ kind and `c σ1 :: κ and `c σ2 :: κ are assumed. This means any expression of either

type is also of the other type. The definition is

`c {l1, . . . , lm} ≡ {l′1, . . . , l
′
n} :: IndexSet

if {l1, . . . , lm} = {l′1, . . . , l
′
n} (6.17a)

`q εL ≡ ε′L : [εL, εL] `q εU ≡ ε′U : [εU , εU]

`c [εL, εU] ≡ [ε′L, ε′U] :: IndexSet
(6.17b)

∅ ` σ1 ≡ σ′
1 :: IndexSet

x1 : σ1 ` σ2 ≡ σ′
2 :: IndexSet

...

x1 : σ1, . . . , xm−1 : σm−1 ` σm ≡ σ′
m :: IndexSet

`c x1 : σ1 × · · · × xm : σm ≡ x1 : σ′
1 × · · · × xm : σ′

m :: IndexSet
(6.17c)

x : σ ` σ1 ≡ σ2 :: κ

`c λx � σ1 ≡ λx � σ2 :: (x : σ ⇒ κ)
(6.17d)

The first three rules are similar to the subtyping judgement, but equality is also defined for

type functions. Two functions are equal if for every x : σ, their input type, the output will

be equivalent.

6.3.1.6 Canonical Subkinding

Let `c κ1 ≤:: κ2 mean κ1 is a subkind of κ2, where `c κ1 kind and `c κ2 kind are assumed.

This means any type that is an element of κ1 is also an element of κ2. The definition of

CHAPTER 6. INDEX SETS 98

6.3. TYPE SYSTEM

subkinding is

`c IndexSet ≤:: IndexSet
(6.18a)

`q σ2 ≤: σ1 x : σ2 ` κ1 ≤:: κ2

`c (x : σ1 ⇒ κ1) ≤:: (x : σ2 ⇒ κ2)
(6.18b)

A function kind x : σ1 ⇒ κ1 can be a subkind of another function kind x : σ2 ⇒ κ2 if its

domain is larger and codomain smaller. Let g1 be a function of kind x : σ1 ⇒ κ1 and g2 a

function of kind x : σ2 ⇒ κ2. Since x : σ1 ⇒ κ1 is a subkind of x : σ2 ⇒ κ2, it should be

possible to replace any occurrence of g2 with g1. Thus, it should be possible to apply g1 to

at least any argument that g2 might be applied to, i.e. the domain of g1 should contain at

least all the elements of g2’s domain. Conversely, g2 (ε) returns some value which is valid in

the location that g2 (ε) occurs. The application g1 (ε) must not return any value that g2 (ε)

would not, i.e. the codomain of g1 should be smaller than that of g2. Else, replacing g2 (ε)

with g1 (ε) would lead to a possibly ill-formed program.

6.3.1.7 Canonical Kind Equivalence

Let `c κ1 ≡ κ2 mean the two canonical kinds are equivalent, where `c κ1 kind and `c

κ2 kind are assumed. The definition is analogous to subkinding,

`c IndexSet ≡ IndexSet
(6.19a)

`q σ2 ≡ σ1 :: IndexSet x : σ2 ` κ1 ≡ κ2

`c (x : σ1 ⇒ κ1) ≡ (x : σ2 ⇒ κ2)
(6.19b)

6.3.1.8 Canonical Expression Comparison

`c ε1 ≤ ε2 means ε1 is less than or equal to ε2. The notion of comparison is defined only for

integers. It is assumed that both expressions are of an integer interval type. The definition

is by the single rule

`c k1 ≤ k2
if k1 ≤ k2 (6.20)

which resorts to the meta-language notion of comparison.

6.3.1.9 Canonical Expression Equivalence

`c ε1 ≡ ε2 : σ means the two canonical expressions are equivalent, where `c ε1 : σ and

`c ε2 : σ are assumed. Unlike comparison, the equivalence notion applies to all types of

CHAPTER 6. INDEX SETS 99

6.3. TYPE SYSTEM

expressions. The definition is given by the rules

`c l1 ≡ l2 : {l1, . . . , lm}
where l1 = l2 (6.21a)

`c k1 ≡ k2 : [εL, εU]
where k1 = k2 (6.21b)

`q e1 ≡ e′1 : σ1

`q e2 ≡ e′2 : {e1/x1}σ2

...

`q em ≡ e′m : {e1/x1, . . . , em−1/xm−1}σm

`c (e1, . . . , em) ≡ (e′1, . . . , e
′
m) : (x1 : σ1 × · · · × xm : σm)

(6.21c)

Two tuples are equivalent if each of their components are. The only slight challenge is

to state at what type these components are supposed to be equivalent. Elements εj and

ε′j should be consider at type σj with all the x’s from previous components substituted in

to σj . This substitution is guaranteed to close the types but they may not be canonical.

Hence, the recursion calls the equivalence relation on closed forms.

Functions are equivalent if their returned values are equivalent when applied to equivalent

values. This can be checked by requiring the function bodies to be equivalent in the context

x : σ1. The judgement on full forms will check equivalence under each possible value of x

in σ1.

6.3.2 Judgements on Closed Forms

Judgements on closed forms simply evaluate constructs and then employ the corresponding

judgement on canonical forms. The general form of a judgement on canonical forms is `q J ,

where J involves any of ε, σ, and/or κ. The general definition is

J ↘ J ′ `c J ′

`q J
(6.22)

To check a property of closed forms, we evaluate all constructs to their canonical form and

then call the corresponding judgement on canonical forms. As one example, kind checking

is defined by the rule
σ ↘ σ′ κ ↘ κ′ `c σ′ :: κ′

`q σ :: κ
(6.23)

The important point is that this definition has an implementation because evaluation

in the indexing language is algorithmic. Evaluation relations in the MP language are not

because of the presence of real numbers.

6.3.3 Judgements on Full Forms

Judgements on full forms are generically of the form ∆ ` J , and the general definition of

the judgement is

1. ∅ ` J if

CHAPTER 6. INDEX SETS 100

6.3. TYPE SYSTEM

`q J

2. x : σ,∆ ` J if

∀η ∈ σ � {η/x}∆ ` {η/x}J

If the context is empty, then all constructs in the judgement must be closed and the corre-

sponding judgement on closed forms is called. If there is a variable, the judgement must be

satisfied for every possible value of that variable.

As an example, consider the typing judgement for expressions ∆ ` ε : σ. Its definition is

1. ∅ ` ε : σ if

`q ε : σ

2. x : σ,∆ ` ε : σ′ if

∀η ∈ σ � {η/x}∆ ` {η/x} ε : {η/x}σ′

Given that x is of type σ, the expression x+3 is well-formed if η+3 is well-formed for every

η ∈ σ.

This defines the judgement, but it is not yet clear if this judgement has an implemen-

tation. It does. The values of any closed type σ can be enumerated to literally check all

instances of the universally quantified judgement. More efficient implementations might be

possible too, but we present just this one.

Let Sq (σ) denote the elements of closed type σ. Its definition is

• Sq (σ) = Sc (σ′) if

σ ↘ σ′

which simply evaluates the type to its canonical form and calculates the elements of the

canonical type, given by Sc (σ). The definition of Sc (σ) is by induction on the form of σ,

1. Sc ({l1, . . . , lm}) = {l1, . . . , lm}

2. Sc ([εL, εU]) = {ηL, ηL + 1, . . . , ηU} if

εL ↘ ηL and εU ↘ ηU

3. (a) Sc (unit) = {()}

(b) Sc (x1 : σ1 × · · · × xm : σm) =
⋃

η1∈Sq(σ1)

⋃

η2∈Sq({η1/x1}σ2)

· · ·
⋃

ηm∈Sq({η1/x1,...,ηm−1/xm−1}σm)

{(η1, . . . , ηm)}

Rule 1 says that the elements of an enumerated type are exactly those elements. The

argument {l1, . . . , lm} in Sc ({l1, . . . , lm}) is a type in the object language, and the set on

the right of the equal sign is in the meta-language.

In Rule 2, the elements of an interval [εL, εU] are determined by first evaluating the lower

and upper bound to integers ηL and ηU . The set consists of the integers from ηL through

ηU .

CHAPTER 6. INDEX SETS 101

6.4. RESULTS

Rule 3 considers two cases for the dependent product x1 : σ1 × · · · × xm : σm. If m = 0,

then this type is called unit. The set unit is defined to contain just the single element ().

The case m = 1 is not allowed; it is considered invalid syntax. When m ≥ 2, the Cartesian

product of the individual sets is taken. However, subsequent sets can depend on the actual

value of previous components, requiring a more subtle definition.

Consider enumerating the values of x1 : [1, 2] × [1, x1]. The first type, [1, 2] in this

example, must be closed. If it were not, the dependent product would not be canonical,

violating the precondition. Its elements can thus be enumerated. The first union is over η1 ∈

Sq ([1, 2]). The enumeration procedure for dependent products recursively calls the enumer-

ation procedure on its component types. The second union is over η2 ∈ Sq ({η1/x1} [1, x1]).

For each η1, the second union first closes σ2 and then enumerates its values. The free vari-

ables of η2 can only be x1 because otherwise the dependent product would not be canonical.

In this way each possible tuple (η1, . . . , ηm) is formed, and the union of all is the final answer.

6.4 Results

The main goal of the indexing logic is to enable the definition of sophisticated sets in a

compact and intuitive manner. A rich syntax has been provided, and the judgement ∆ `

σ :: κ allows determining that the syntax is being used correctly. Finally, the enumeration

procedure allows explicitly obtaining the index set declared implicitly within the logic’s

syntax.

We show some examples of how index sets can be declared in the novel language defined

in this chapter. The enumeration procedure is used to output the explicit set of elements.

Interesting examples are difficult without use of the “let” constructs defined in Appendix

B. In the following examples, we allow use of this syntax although it was not introduced in

this chapter.

The concrete syntax is slightly different than the abstract syntax used in the theory.

Type functions λx � σ are written in ASCII text as fni x . sigma, where sigma would

be any type. The argument of a function application σ ε is surrounded in square brackets.

Other concrete syntax is a fairly obvious translation from the abstract syntax, but a complete

discussion is provided in Appendix C.

Example 6.1 The following is a simple product type,

1 {’a’,’b’} * [1,3]

The enumeration procedure allows checking the explicit set being declared. It gives

{(’a’,1), (’a’,2), (’a’,3),

(’b’,1), (’b’,2), (’b’,3)}

which is a set of pairs.

Example 6.2 Next, consider a simple dependent product type,

1 i:[1,3] * [2,i]

CHAPTER 6. INDEX SETS 102

6.4. RESULTS

We first check if this type satisfies ∅ ` (i : [1, 3] ∗ [2, i]) :: IndexSet. This check fails and the

following messages are printed,

ERROR: first expri should be less than or equal to second

expri at 1.13: 2

expri at 1.15: 1

MSG: ill-formed type, lower bound must be less than or equal to upper bound

in typei at 1.12-1.16: [2, 1]

MSG: typei not of required kindi, previous messages should explain why

contexti: i:[1, 3]

typei at 1.12-1.16: [2, i]

kindi: IndexSet

The first error states that 2 must be less than or equal to 1. The second message explains that

this is needed to check that [2, 1] is a well-formed type. However, even [2, 1] is not a type that

exists in the program as written. In a more complex example, it might still not be clear how

this interval arose. The third message states that the judgement i : [1, 3] ` [2, i] :: IndexSet

is being checked. It is now clear that the second component of the dependent product is being

checked within the context containing the variable introduced by the first component. When i

takes the value 1, the interval [2, 1] must be an IndexSet, which fails.

Let’s fix the program to be

1 i:[1,3] * [1,i]

This type is a well-formed index set. The enumeration procedure shows the elements explicitly

to be

{(1,1),

(2,1), (2,2),

(3,1), (3,2), (3,3)}

The values of the second component are always less than or equal to the first.

Example 6.3 A more physical example demonstrates the importance of additional features.

Index sets defined in the following program would be useful in a scheduling problem.

1 let

2 set JOBS = {’a’,’b’,’c’}

3

4 typei RUNS_ON = fni j . case j of

5 ’a’ => {’s1’,’s2’}

6 | ’b’ => {’s1’,’s3’,’s4’}

7 | ’c’ => {’s3’,’s4’}

8 in

9 j:JOBS * RUNS_ON[j]

10 end

CHAPTER 6. INDEX SETS 103

6.4. RESULTS

A set of jobs {’a’,’b’,’c’} is given the name JOBS. The keyword set indicates that an index

type is being named. Additionally, it checks that the index type is of kind IndexSet. Next,

another index type RUNS ON is defined. It is not an index set, so the more general keyword typei

is used. RUNS ON is a type function. Given a job j, it returns the stages that job runs on. Finally,

these two definitions are used in the overall index type being defined, j:JOBS * RUNS ON[j].

The second component applies the function RUNS ON to whatever value the first component

takes.

The entire above input is a type in the indexing logic, i.e. of the syntactic form σ. We first

check that the judgement ∅ ` σ :: IndexSet is satisfied. It is. Then, the elements of this type

can be enumerated. Explicitly, the above type is

{(’a’,’s1’), (’a’,’s2’),

(’b’,’s1’), (’b’,’s3’), (’b’,’s4’),

(’c’,’s3’), (’c’,’s4’)}

The set pairs up jobs with only the stages that that job runs on.

Another part of a complete program may require only the stages that job ’a’ runs on. The

type RUNS ON[’a’] would provide this. Yet another part might be concerned with only jobs

’a’ and ’b’, and their corresponding stages. The type j:{’a’,’b’} * RUNS ON[j] would

refer to the set

{(’a’,’s1’), (’a’,’s2’),

(’b’,’s1’), (’b’,’s3’), (’b’,’s4’)}

CHAPTER 6. INDEX SETS 104

Chapter 7

Indexed Mathematical

Programs

In Chapter 4, we formulated unindexed mathematical programs (MPs) as a formal logic.

Chapter 6 presented a logic for modeling index sets. Now, we combine the works of these

two chapters to present a theory of indexed mathematical programs.

Referring to the resulting systems as mathematical programs is somewhat misleading.

The theory we present enhances traditional MP with functions (with finite domains) and

indexed operations. These allow genuinely novel algorithms, in which indices are not merely

a syntactical convenience for expressing a large number of similar computations. In some

cases, the operation can actually be implemented as a single computation. This is possible

because, just like numbers, indexed constructs are part of the formal theory, not a syntactic

feature eliminated prior to computation.

On the other hand, indexed constructs can be eliminated if desired, to interface to

current solvers for example. In this case, they still serve the important role of providing an

enriched modeling language. As reviewed in the Introduction chapter, indexing is one of the

primary features of existing MP modeling software. Our work provides a rigorous design

methodology for such software.

The syntax of the logic defined here is an extension of that in Chapter 4. So there is

some repetition in the definitions, but the discussion focuses on the extensions only. Adding

indexing is sometimes straightforward, but some judgements become fundamentally more

complex.

7.1 Syntax

7.1.1 Full Forms

The current language specification will use the notation τ for types and e for expressions.

The types and expressions of the indexing language were denoted σ and ε. References

to constructs in the indexing language will always be qualified as such. The unqualified

terms “expression” and “type” refer to constructs of the full programming language, but

105

7.1. SYNTAX

sometimes we use the qualification “program” for emphasis.

Also, now we use i to denote variables in the indexing language—these are of some

type σ and are called index variables. The symbol x is reserved for variables in the full

programming language—these are of some type τ and are called program variables.

7.1.1.1 Types

The types of the language are

τ ::= real | bool | i : σ → τ (7.1)

The type i : σ → τ represents an indexed family of types, or alternatively, a mapping

from an index set σ to a type τ . This is a dependent type, but the dependency is only on

index variables, not program variables. An example is i : [1, 10] → ([1, i] → real). Given

an i equal to a particular value k, functions of this type will return a function of type

[1, k] → real. The type i : σ → τ formalizes the notion of indexed terms. A variable of this

type is what is normally call an indexed variable, and a constant of this type is an indexed

parameter.

7.1.1.2 Expressions

The syntax for expressions is

e ::= x | r | true | false

| −e | e1 + e2 | e1 − e2 | e1 ∗ e2

| not e | e1 or e2 | e1 and e2

|
∑

i:σ

e

| casei�τ ε of {lj ⇒ ej}
m
j=1 | casei�τ ε of {kj ⇒ ej}

m
j=1

| λi : σ � e | e ε

| e : τ (7.2)

The first expression involving indexing is
∑

i:σ e, a generalization of binary addition.

The
∑

is a variable binder. It introduces a new index variable i of index type σ. The scope

of i is e, the body of the
∑

.

Case expressions are familiar from the indexing logic, but now an ascription i�τ is required

to provide the type of the ith branch. The semantically defined type system circumvented

this need, but the MP type system requires this information.

The notation λi : σ � e refers to a function whose input argument is named i and is of

type σ. The expression e ε applies an expression e to an index expression ε.

Finally, the expression “e : τ” is called a type ascription. It allows ascribing a type to an

expression. This is useful for documentation purposes. If expression e is very complicated,

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 106

7.1. SYNTAX

programming errors might cause it to be of a type other than the intended one. Ascribing

the type τ to e causes the type checker to verify that e is indeed of type τ . Also, type

ascription is necessary to implement a type inference procedure discussed in Section 7.2.5.

7.1.1.3 Propositions

The syntax for propositions, or constraints, is

c ::= T | F

| isTrue e | e1 = e2 | e1 ≤ e2

| c1 ∨ c2 | c1 ∧ c2

| ∃x : τ � c

|
∨

i:σ

c |
∧

i:σ

c

| casei�ζ ε of {lj ⇒ cj}
m
j=1 | casei�ζ ε of {kj ⇒ cj}

m
j=1

| λi : σ � c | c ε

| c : ζ (7.3)

The extensions are similar to that for expressions. Indexed versions of binary operations

are provided. Case constructs represent tables of propositions. The propositional function

λi : [1, 2] � case i of

1 ⇒ (x1 = 3)

| 2 ⇒ (x1 = x2 + x3)

can be applied to an index expression of type [1, 2]. Let this function be named f . Then

f (1) is equivalent to the proposition x1 = 3, and f (2) gives the proposition x1 = x2 + x3.

Finally, analogously to the expression e : τ , we provide propositional type ascription c : ζ.

7.1.1.4 Propositional Types

In unindexed MPs, the judgement c prop means c is a well-formed proposition. The only

category to which propositions can belong is prop. Indexed programs require enriching the

categories into which propositions are placed. Some are truly propositions, statements which

are satisfied or not. Others, indexed families of propositions. The types of propositions are

ζ ::= Prop | i : σ → ζ (7.4)

Prop represents the set of proper propositions, just like prop in the unindexed theory.

The propositional function type i : σ → ζ categorizes propositional functions. It includes

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 107

7.1. SYNTAX

those functions which, when applied to an index expression of type σ, return a proposition

of type ζ.

7.1.1.5 Programs

Finally, the syntax of a program is

p ::= δx1:τ1,...,xm:τm
{e | c} (7.5)

where δ ::= min | max. This is unchanged from unindexed MPs, but the types, expressions,

and propositions it employs are of the enriched syntax.

7.1.2 Meta-Operations Relating to Variables

Variables of two different natures exist in indexed programs: index variables and MP vari-

ables, which are being denoted with i and x, respectively. All constructs can contain index

variables. Expressions, propositions, and programs contain MP variables. In general, we

need methods for determining the free index and MP variables for each syntactic construct.

Let s refer to any one of the syntactic constructs ε, σ, κ, e, τ , c, ζ, or p.

We need to define {ε/i} s—the substitution of an index expression into every syntactic

construct—and {e/x} e′, {e/x} c, and {e/x} p—the substitution of MP expressions. That

is already eleven substitution procedures. In our full implementation we actually have

variables in every syntactic construct. For example, one can write R = [1, 10], which gives

the name R to the index type [1, 10]. This is only a concrete syntax feature. All instances

of R are replaced with [1, 10] prior to any operation. But this means we actually need

to define {s/x} s′ for every combination of syntactic categories s and s′, which is 8 ∗ 8 =

64 functions (actually somewhat less because not all combinations are needed). Other

operations involving variables are also required, such as α-conversion and determining the

set of free variables.

These are not difficult operations to define. They were defined for the unindexed pro-

grams and indexing logic, but there is now a combinatorial increase in the number of such

functions needed. Writing such a large number of functions is tedious and error prone.

Instead, we present a meta-logic in Appendix B, within which the present logic can be de-

fined. Several operations relating to variables are defined once in the meta-logic and become

available for free for the numerous special cases needed.

Suffice it here to know that the following operations are available for all combinations of

s and s′:

• {s/x} s′, substitution of s for a variable x (of the same syntactic category as s) into

s′,

• s closed, construct s has no free variables of any syntactic category,

• α-conversion, renaming of variable names for any construct.

Several other variable operations are also presented in Appendix B but are not needed

directly in this chapter.

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 108

7.2. TYPE SYSTEM

7.2 Type System

The syntax of indexed mathematical programs involves both index and program variables.

Correspondingly, typing judgements in this logic require two contexts, a context of index

variables ∆ and a context of program variables Γ. The judgements defined here employ

judgements defined in the indexing logic.

7.2.1 Well-Formed Type

Let `∆ τ type mean τ is a well-formed type in the given indexing context, which is assumed

to satisfy ∆ ctxt. Types do not contain program variables, so a program context is not

required. Its definition is

`∆ real type
(7.6a)

`∆ bool type
(7.6b)

∆ ` σ :: IndexSet `∆,i:σ τ type

`∆ i : σ → τ type
(7.6c)

The function type i : σ → τ firstly requires that σ be an IndexSet because i must be

allowed to take some value, and only index types of kind IndexSet contain expressions.

Secondly, the type τ in i : σ → τ is required to be itself well-formed in the index context

augmented with i : σ. Note the scope of i in i : σ → τ is only τ , not σ.

7.2.2 Well-Formed Context

Let `∆ Γ ctxt mean context Γ is well-formed, where ∆ ctxt is assumed. The definition

is by induction on the construction of Γ,

`∆ ∅ ctxt
(7.7a)

`∆ Γ ctxt `∆ τ type

`∆ Γ, x : τ ctxt
(7.7b)

This simply checks that all declared types are well-formed.

7.2.3 Type Equivalence

In unindexed programs, only syntactically identical types could be equivalent. Now, we have

the possibility that two types which are not obviously the same, i.e. syntactically identical,

might still be definitionally equivalent. Let `∆ τ1 ≡ τ2 mean types τ1 and τ2 are equivalent,

where ∆ ctxt, `∆ τ1 type, and `∆ τ2 type are assumed. It is assumed that the two types

are well-formed. There is no reason to check equivalence of ill-formed types. The definition

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 109

7.2. TYPE SYSTEM

is given by the rules

`∆ real ≡ real
(7.8a)

`∆ bool ≡ bool
(7.8b)

∆ ` σ2 ≡ σ1 :: IndexSet `∆,i:σ2
τ1 ≡ τ2

`∆ (i : σ1 → τ1) ≡ (i : σ2 → τ2)
(7.8c)

Equivalence of the basic types real and bool is just a reflexivity relation. Two function

types are equivalent if both the input and output types are equivalent. Consider first function

types with index domains. The input types are index types σ1 and σ2, and we check that

these are equivalent using a judgement defined in the previous chapter. Secondly, the output

types τ1 and τ2 must be equivalent in the context augmented with i : σ2. It would be equally

valid to add i : σ1 instead because σ1 and σ2 are equivalent.

As in the indexing logic, judgement definitions are presented modulo α-conversion. We

have assumed the introduced variable in both function types is i. In actuality, the variables

might be distinct but the types still equivalent. It is understood that the bound variable

names are made identical prior to applying the above rules. This can always be done using

the α-conversion method defined in Appendix B.

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 110

7.2. TYPE SYSTEM

7.2.4 Type of Expression

Let Γ `∆ e : τ mean e is of type τ in the given contexts, where ∆ ctxt, `∆ Γ ctxt, and

`∆ τ type are assumed. Its definition is

Γ `∆ x : τ
where (x : τ) ∈ Γ (7.9a)

Γ `∆ r : real
(7.9b)

Γ `∆ true : bool
(7.9c)

Γ `∆ false : bool
(7.9d)

Γ `∆ e : real

Γ `∆ −e : real
(7.9e)

Γ `∆ e1 : real Γ `∆ e2 : real

Γ `∆ e1 op e2 : real
for op ∈ {+,−, ∗} (7.9f)

Γ `∆ e : bool

Γ `∆ not e : bool
(7.9g)

Γ `∆ e1 : bool Γ `∆ e2 : bool

Γ `∆ e1 op e2 : bool
for op ∈ {or, and} (7.9h)

∆ ` σ :: IndexSet Γ `∆,i:σ e : real

Γ `∆

∑

i:σ

e : real
(7.9i)

`∆,i:{l1,...,lm} τ type ∆ ` ε : {l1, . . . , lm} {Γ `∆ ej : {lj/i} τ}m
j=1

Γ `∆ casei�τ ε of {lj ⇒ ej}
m
j=1 : {ε/i} τ

(7.9j)

`∆,i:[k1,km] τ type ∆ ` ε : [k1, km] {Γ `∆ ej : {kj/i} τ}m
j=1

Γ `∆ casei�τ ε of {kj ⇒ ej}
m
j=1 : {ε/i} τ

(7.9k)

∆ ` σ′ :: IndexSet ∆ ` σ′ ≡ σ :: IndexSet Γ `∆,i:σ e : τ

Γ `∆ (λi : σ′ � e) : (i : σ → τ)
(7.9l)

Γ `∆ e : (i : σ → τ) ∆ ` ε : σ

Γ `∆ e ε : {ε/i} τ
(7.9m)

`∆ τ ′ type `∆ τ ′ ≡ τ Γ `∆ e : τ

Γ `∆ (e : τ ′) : τ
(7.9n)

Γ `∆ e : τ ′ `∆ τ ′ ≡ τ

Γ `∆ e : τ
subsumption (7.9o)

Rules not involving index expressions are similar to those given in Chapter 4, except

now an index context is also required.

The rule for type checking
∑

i:σ e first requires that the σ is indeed an index set. Oth-

erwise, it is erroneous to declare a variable i of type σ. Within the context augmented with

i : σ, the body e must be of type real. If these conditions are met, the whole summation

expression is of type real.

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 111

7.2. TYPE SYSTEM

Type checking expression casei�τ ε of {lj ⇒ ej}
m
j=1 firstly requires the introduced τ to

be well-formed and the case object ε to be of type {l1, . . . , lm}. The rule requires information

about what the type of each branch is supposed to be, as provided by the ascription i � τ .

This declaration is interpreted to mean the jth branch has type {lj/i} τ , which is checked

by the final precondition. If this is satisfied, the type of the case expression is {ε/i} τ .

Next, a function λi : σ � e is declared to be of type i : σ → τ if its body e is of type

τ , after adding i : σ to the indexing context. Following this, we have function application

e ε. The expression e being applied must be of a function type i : σ → τ . The argument ε

being applied must be of the type expected by the function type, which is σ. The returned

expression will be of type {ε/i} τ .

As an example, let f be the expression

λi1 : [1, 2] � λi2 : [1, i1] � case i1 of

1 ⇒ (case i2 of 1 ⇒ 3.4)

| 2 ⇒ (case i2 of 1 ⇒ 1.3 | 2 ⇒ 5.6)

which is of type i1 : [1, 2] → ([1, i1] → real). If f is applied to 1, the resulting expression is

λi2 : [1, 1] � case 1 of

1 ⇒ (case i2 of 1 ⇒ 3.4)

| 2 ⇒ (case i2 of 1 ⇒ 1.3 | 2 ⇒ 5.6) .

This case object is a constant and so this reduces to

λi2 : [1, 1] � case i2 of 1 ⇒ 3.4

which is of type [1, 1] → real, i.e. {1/i1} ([1, i1] → real). Similarly, f (2) would be of type

[1, 2] → real, which is {2/i1} ([1, i1] → real).

The expression “e : τ” is of type τ if e is of type τ . This simply verifies that the ascription

is correct.

The final rule is called a subsumption rule and applies to all expressions. It says that if

e is of type τ ′ and τ ′ is equivalent to τ , then e is also of type τ . An expression of type τ ′

can also be treated as being of any equivalent type τ .

7.2.5 Algorithmic Type of Expression

In unindexed programs, all typing judgements immediately lended themselves to the top-

down proof strategy. The definition of Γ `∆ e : τ does not because of complications arising

in the subsumption rule and the rule for the application form e ε.

There are now two rules for every expression form: one rule that is specifically for that

form, and the subsumption rule which applies to every expression. A particular e can satisfy

the judgement if the preconditions of either rule are satisfied. The top-down proof strategy

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 112

7.2. TYPE SYSTEM

thus requires that both sets of preconditions be checked, causing branching in the prover.

This is less efficient but possible.

The real trouble with the subsumption rule is in its preconditions. The τ ′ in the pre-

conditions does not appear in its conclusion. Imagine we are checking Γ `∆ e : τ for some

specific Γ, ∆, e, and τ . The precondition requires us to check Γ `∆ e : τ ′, but from where

do we get the τ ′? It must be guessed from amongst an infinity of possibilities. The same sit-

uation occurs in the rule for the application form. This issue is well known, and a technique

called bidirectional type checking resolves it.

Let Γ `∆ e ↓ τ be an analysis judgement and Γ `∆ e ↑ τ a synthesis judgement. Analysis

means it is checked whether a given Γ, ∆, e, and τ satisfy the typing judgement. This is the

normal way of reading a judgement. Synthesis means only Γ, ∆, and e are given. A type τ

must be synthesized, i.e. returned, such that the given Γ, ∆, and e, and the synthesized τ

satisfy the typing judgement.

Since the synthesis judgement generates the type of an expression, it is possible to reduce

the amount of type declarations required from a user of the language. A function λi : σ � e

requires the type of its input argument to be specified. We can now modify this syntax

to λi � e, omitting the type declaration. Sometimes this omission makes it impossible to

determine whether an expression is well-formed or not. This is not a problem because one

can always use the expression form e : τ to explicitly provide the type information.

Expressions are split into those whose types can be synthesized versus those that can be

analyzed. The idea is to synthesize whenever possible to provide maximum type inference.

Also because if a type can be synthesized it can certainly be analyzed but not vice versa. If

we can synthesize a type τ for a given e, we can certainly check that e is of a given type τ .

The analysis judgement Γ `∆ e ↓ τ is the one that corresponds to the original judgement

Γ `∆ e : τ of interest. Its definition is

Γ `∆,i:σ e ↓ τ

Γ `∆ (λi � e) ↓ (i : σ → τ)
(7.10a)

Γ `∆ e ↑ τ ′ `∆ τ ′ ≡ τ

Γ `∆ e ↓ τ
where e not λi � e′ (7.10b)

In the first rule, a function is checked to be of a given a function type. The second rule is

the subsumption rule. When checking whether a given e is of a given type τ , we attempt

to synthesize a type τ ′ for e and check if τ ′ is equivalent to τ . Type τ ′ no longer needs to

be guessed because the synthesis judgement provides it.

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 113

7.2. TYPE SYSTEM

The definition of Γ `∆ e ↑ τ includes a rule for every form except λi � e,

Γ `∆ x ↑ τ
where (x : τ) ∈ Γ (7.11a)

Γ `∆ r ↑ real
(7.11b)

Γ `∆ true ↑ bool
(7.11c)

Γ `∆ false ↑ bool
(7.11d)

Γ `∆ e ↓ real

Γ `∆ −e ↑ real
(7.11e)

Γ `∆ e1 ↓ real Γ `∆ e2 ↓ real

Γ `∆ e1 op e2 ↑ real
for op ∈ {+,−, ∗} (7.11f)

Γ `∆ e ↓ bool

Γ `∆ not e ↑ bool
(7.11g)

Γ `∆ e1 ↓ bool Γ `∆ e2 ↓ bool

Γ `∆ e1 op e2 ↑ bool
for op ∈ {or, and} (7.11h)

∆ ` σ :: IndexSet Γ `∆,i:σ e ↓ real

Γ `∆

∑

i:σ

e ↑ real
(7.11i)

`∆,i:{l1,...,lm} τ type ∆ ` ε : {l1, . . . , lm} {Γ `∆ ej ↓ {lj/i} τ}m
j=1

Γ `∆ casei�τ ε of {lj ⇒ ej}
m
j=1 ↑ {ε/i} τ

(7.11j)

`∆,i:[k1,km] τ type ∆ ` ε : [k1, km] {Γ `∆ ej ↓ {kj/i} τ}m
j=1

Γ `∆ casei�τ ε of {kj ⇒ ej}
m
j=1 ↑ {ε/i} τ

(7.11k)

Γ `∆ e ↑ (i : σ → τ) ∆ ` ε : σ

Γ `∆ e ε ↑ {ε/i} τ
(7.11l)

Γ `∆ e ↓ τ

Γ `∆ (e : τ) ↑ τ
(7.11m)

A variable x’s type can be synthesized. Given the variable, we simply check what its

declared type is in the context and return that type. An arithmetic expression such as

e1 + e2 can also have its type synthesized. It can only return type real, and only if the

sub-expressions can each be analyzed to be of type real. Other numeric and Boolean

expressions are similar.

It is possible to synthesize the type of a case expression because of the information i � τ

provided as part of the expression. The result is {ε/i} τ if each branch can be checked to

be of type {lj/i} τ .

The type of an application e ε can also be synthesized, assuming the type of e can be

synthesized. The type synthesized for e must be of the form i : σ → τ because it is being

applied to an index expression. Given that such a type is synthesized, we now have the input

type of the function and can check that ε is of this type. If so, it is possible to conclude

that τ is the type of the whole expression.

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 114

7.2. TYPE SYSTEM

In conclusion, the type analysis judgement Γ `∆ e ↓ τ is the algorithmic version of

Γ `∆ e : τ . We consider the latter to be the definition of the typing relation, and always

refer to it in the theory, and the former is its implementation.

7.2.6 Well-Formed Propositional Type

Let `∆ ζ prop type mean ζ is a well-formed propositional type, where ∆ ctxt is assumed

Its definition is

`∆ Prop prop type
(7.12a)

∆ ` σ :: IndexSet `∆,i:σ ζ prop type

`∆ i : σ → ζ prop type
(7.12b)

These rules are analogous to those defining well-formed types τ .

7.2.7 Propositional Type Equivalence

Let `∆ ζ1 ≡ ζ2 mean propositional types ζ1 and ζ2 are equivalent, where ∆ ctxt, `∆

ζ1 prop type and `∆ ζ2 prop type are assumed. The definition is given by the rules

`∆ Prop ≡ Prop
(7.13a)

∆ ` σ2 ≡ σ1 :: IndexSet `∆,i:σ2
ζ1 ≡ ζ2

`∆ (i : σ1 → ζ1) ≡ (i : σ2 → ζ2)
(7.13b)

Again, the rules are analogous to type equivalence.

7.2.8 Type of Proposition

Just as expressions e are categorized into types τ , propositions c are categorized into propo-

sitional types ζ. Let Γ `∆ c : ζ mean c is of propositional type ζ, where ∆ ctxt, `∆ Γ ctxt,

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 115

7.2. TYPE SYSTEM

and `∆ ζ prop type are assumed. The definition is inductive on c,

Γ `∆ T : Prop
(7.14a)

Γ `∆ F : Prop
(7.14b)

Γ `∆ e : bool

Γ `∆ isTrue e : Prop
(7.14c)

Γ `∆ e1 : real Γ `∆ e2 : real

Γ `∆ e1 op e2 : Prop
for op ∈ {=,≤} (7.14d)

Γ `∆ c1 : Prop Γ `∆ c2 : Prop

Γ `∆ c1 op c2 : Prop
for op ∈ {∨,∧} (7.14e)

`∆ τ type Γ, x : τ ` c : Prop

Γ `∆ ∃x : τ � c : Prop
(7.14f)

∆ ` σ :: IndexSet Γ `∆,i:σ c : Prop

Γ `∆ OP
i:σ

c : Prop
for OP ∈ {

∨
,
∧
} (7.14g)

`∆,i:{l1,...,lm} ζ prop type ∆ ` ε : {l1, . . . , lm} {Γ `∆ cj : {lj/i} ζ}m
j=1

Γ `∆ casei�ζ ε of {lj ⇒ cj}
m
j=1 : {ε/i} ζ

(7.14h)

`∆,i:{l1,...,lm} ζ prop type ∆ ` ε : [k1, km] {Γ `∆ cj : {kj/i} ζ}m
j=1

Γ `∆ casei�ζ ε of {kj ⇒ cj}
m
j=1 : {ε/i} ζ

(7.14i)

∆ ` σ′ :: IndexSet ∆ ` σ′ ≡ σ Γ `∆,i:σ c : ζ

Γ `∆ (λi : σ′ � c) : (i : σ → ζ)
(7.14j)

Γ `∆ c : (i : σ → ζ) ∆ ` ε : σ

Γ `∆ c ε : {ε/i} ζ
(7.14k)

`∆ ζ ′ prop type `∆ ζ ′ ≡ ζ Γ `∆ c : ζ

Γ `∆ (c : ζ ′) : ζ
(7.14l)

Γ `∆ c : ζ ′ `∆ ζ ′ ≡ ζ

Γ `∆ c : ζ
subsumption (7.14m)

The rules are similar to those defining the types of expressions. Again, there is a subsumption

rule and application forms, and the identical issues arise. An algorithmic propositional

typing judgement can be provided in the same way as for expression type checking.

7.2.9 Well-Formed Program

Let p mp mean program p is a well-formed program. Its definition is

{`∅ τj type}m
j=1

x1 : τ1, . . . , xm : τm `∅ e : real

x1 : τ1, . . . , xm : τm `∅ c : Prop

δx1:τ1,...,xm:τm
{e | c} mp

(7.15)

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 116

7.3. REFINED TYPES

which is similar to the unindexed theory because the outer syntactic form of programs is

unchanged. The only difference is that we now pass in an empty index context to the

preconditions because index variables are not introduced at the program level.

7.3 Refined Types

The general idea of refined types, or domains, was discussed in Section 4.4. The present logic

has an enriched type system and requires a corresponding enrichment of type refinements.

Their syntax is

ρ ::= 〈rL, rU 〉 | 〈rL,∞) | (−∞, rU 〉 | real

| [rL, kU] | [rL,∞) | (−∞, rU] | int

| {true} | {false} | bool

| i : σ → ρ (7.16)

These are a straightforward extension of the refined types in the unindexed theory.

The coarse type τ of a refined type ρ is given by the judgement ρ ⊆ τ , defined by the

rules

〈rL, rU 〉 ⊆ real
(7.17a)

〈rL,∞) ⊆ real
(7.17b)

(−∞, rU 〉 ⊆ real
(7.17c)

real ⊆ real
(7.17d)

[rL, rU] ⊆ real
(7.17e)

[rL,∞) ⊆ real
(7.17f)

(−∞, rU] ⊆ real
(7.17g)

int ⊆ real
(7.17h)

{true} ⊆ bool
(7.17i)

{false} ⊆ bool
(7.17j)

bool ⊆ bool
(7.17k)

ρ ⊆ τ

(i : σ → ρ) ⊆ (i : σ → τ)
(7.17l)

Type declarations are available in a few places in the language’s syntax, but only some

are replaced with refined type declarations. Our need for refined types is to restrict the

values a variable can take when solving a program. Propositions ∃x : τ � c are replaced with

∃x : ρ � c and programs δx1:τ1,...,xm:τm
{e | c} with δx1:ρ1,...,xm:ρm

{e | c}, but the type in e : τ

and case expressions remain as is. Changing e : τ to e : ρ would be more difficult because it

requires checking that e is of a refined type ρ. This would affect our notion of well-formed

programs, but that is not our intention for them.

As in the theory of unindexed programs, we define the judgement x : ρ ' c, meaning

the type declaration x : ρ corresponds to a proposition c. Its definition is

x : ρ '∗ c

x : ρ ' c
(7.18)

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 117

7.4. SEMANTICS

All the work is done by a helper judgement e : ρ '∗ c. This judgement is similar but the

recursion allows general expressions, not just a variable. The definition of '∗ is inductive

on the form of ρ,

e : 〈rL, rU 〉 w∗ rL ≤ e ∧ e ≤ rU
(7.19a)

e : 〈rL,∞) w∗ rL ≤ e
(7.19b)

e : (−∞, rU 〉 w∗ e ≤ rU
(7.19c)

e : real w∗ T
(7.19d)

e : [rL, rU] w∗ rL ≤ e ∧ e ≤ rU
(7.19e)

e : [rL,∞) w∗ rL ≤ e
(7.19f)

e : (−∞, rU] w∗ e ≤ rU
(7.19g)

e : int w∗ T
(7.19h)

e : {true} w∗ isTrue e
(7.19i)

e : {false} w∗ isTrue (not e)
(7.19j)

e : bool w∗ T
(7.19k)

(e i) : ρ '∗ c

e : (i : σ → ρ) '∗

∧

i:σ

c
(7.19l)

The final rule requires explanation. Consider a variable declaration x : (i : σ → [1, 10]).

This is a variable indexed by the set σ. According to the judgement, this is equivalent to

stating the bounding proposition
∧

i:σ 1 ≤ (x i) ∧ (x i) ≤ 10, which means x applied to i is

bounded between 1 and 10 for every i. This is exactly the intended interpretation of the

declaration x : (i : σ → [1, 10]).

As for unindexed programs, we define a refined context

Υ ::= ∅ | Υ, x : ρ (7.20)

Finally, let ρ bounded mean ρ represents a bounded domain. Its definition is

〈rL, rU 〉 bounded
(7.21a)

[rL, rU] bounded
(7.21b)

{true} bounded
(7.21c)

{false} bounded
(7.21d)

bool bounded
(7.21e)

ρ bounded

i : σ → ρ bounded
(7.21f)

7.4 Semantics

In Section 4.5, we defined the semantics of unindexed programs. The syntax of expressions

and propositions has been enriched in this chapter. So we need to define expression eval-

uation and propositional truth. The complete definitions are provided but we discuss only

the extensions.

7.4.1 Evaluation of Expression

Let e canonical be defined by the rules

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 118

7.4. SEMANTICS

r canonical
(7.22a)

true canonical
(7.22b)

false canonical
(7.22c)

λi : σ � e closed

λi : σ � e canonical
(7.22d)

Functions are considered canonical simply if they are closed. For example, λi : σ � 1 + 2

is canonical even though the body of the function could be reduced further. In general, the

body would probably involve the variable i. For example, λi : σ � (x i) + 2, and this cannot

be reduced further. An important consequence of this is that canonical expressions that are

syntactically distinct could nonetheless be equivalent, e.g. the functions λi : σ � (x i)+2 and

λi : σ � (x i) + 1 + 1. This contrasts with the canonical forms of unindexed programs.

Recall canonical expressions are also called values. Just as r is a value of type real, the

function λi : σ � e is a value of type i : σ → τ . It is a function constant. The language allows

variables of type real and also function variables. Let v denote an expression e such that

e canonical.

Given e closed, let e ↘ v mean e evaluates to v. Its definition is inductive on the form

of e,

1. r ↘ r

2. true ↘ true

3. false ↘ false

4. −e ↘

{

r if e ↘ −r

−r if e ↘ r

5. e1 op e2 ↘ r if

e1 ↘ r1 and e2 ↘ r2, where r1 op r2 = r, for op ∈ {+,−, ∗}

6. not e ↘

{

true if e ↘ false

false if e ↘ true

7. e1 or e2 ↘

{

true if either e1 ↘ true or e2 ↘ true

false otherwise

8. e1 and e2 ↘

{

true if e1 ↘ true and e2 ↘ true

false otherwise

9.
∑

i:σ

e ↘ r if

{{ηj/i} e ↘ rj}
m
j=1 and r1 + · · · + rm = r, where Sq

σ = {η1, . . . , ηm}

10. casei�τ ε of {lj ⇒ ej}
m
j=1 ↘ e if

ε ↘ lk and ek ↘ e, where k ∈ {l1, . . . , lm}

11. casei�τ ε of {kj ⇒ ej}
m
j=1 ↘ e if

ε ↘ k and ek ↘ e, where k ∈ {k1, . . . , km}

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 119

7.4. SEMANTICS

12. λi : σ � e ↘ λi : σ � e

13. e ε ↘ e′′ if

e ↘ λi : σ � e′ and {ε/i} e′ ↘ e′′

14. e : τ ↘ e′ if

e ↘ e′

Rules covering the extensions of this chapter begin with rule 9.

Indexed summation requires first enumerating the values of the index set over which

the summation is declared. Each of the indices is substituted into the sum’s body, and

evaluated. The sum of each of these terms is the overall solution.

Evaluation of case expressions is familiar from the indexing language. The case object

must evaluate to one of the handles, and evaluation of the corresponding branch is the final

answer.

The function λi : σ � e is already canonical (if it is closed which is a precondition of

evaluation). Evaluation of an application form e ε is done by first evaluating the expression

e. Since we are assuming that expressions have been type checked, e must evaluate to a

function λi : σ �e′ because there is no other canonical form that could be applied to an index

expression. Now, we have (λi : σ � e′) ε, application of a function constant to ε. Application

is done by substituting the argument into the function body, i.e. {ε/i} ε′, which is called

β-reduction. The resulting expression is guaranteed to be closed but it must be evaluated

to obtain the final canonical answer.

Evaluation of an ascribed expression simply disregards the ascription.

7.4.2 Truth of Proposition

In the unindexed logic, all well-formed propositions could be treated as objects to be proven

true or false. In the current logic, only propositions of type Prop can be interpreted this

way. It is invalid to ask if propositions of type i : σ → ζ are true. These are in the syntactic

category we call “propositions”, but they are not propositions in the usual sense.

Certain propositional forms, the case’s, applications, and propositional type ascriptions,

can be of any type. It is necessary to have propositions in a form such that their type is

determinate from their syntactic structure. Let c canonical mean c is a proposition that

cannot be reduced further. Given a closed c, the definition of c canonical is

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 120

7.4. SEMANTICS

T canonical
(7.23a)

F canonical
(7.23b)

isTrue e canonical
(7.23c)

e1 = e2 canonical
(7.23d)

e1 ≤ e2 canonical
(7.23e)

c1 ∨ c2 canonical
(7.23f)

c1 ∧ c2 canonical
(7.23g)

∃x : ρ � c canonical
(7.23h)

∨

i:σ

c canonical

(7.23i)

∧

i:σ

c canonical

(7.23j)

λi : σ � c canonical
(7.23k)

All this definition does is exclude case propositions, applications c ε, and ascriptions c : ζ.

When closed, these can all be reduced. In binary disjunctions and conjunctions we could

require each of c1 and c2 to be canonical, but this is not needed for our purposes.

Given c1 closed and c2 canonical, let c1 ↘ c2 mean c1 evaluates to c2. Its definition

is inductive on the form of c1,

1. T ↘ T

2. F ↘ F

3. isTrue e ↘ isTrue e

4. e1 op e2 ↘ e1 op e2, for op ∈ {=,≤}

5. c1 op c2 ↘ c1 op c2, for op ∈ {∨,∧}

6. ∃x : ρ � c ↘ ∃x : ρ � c

7. OP
i:σ

c ↘ OP
i:σ

c, for OP ∈ {
∨

,
∧
}

8. casei�ζ ε of {lj ⇒ cj}
m
j=1 ↘ c if

ε ↘ lk and ck ↘ c, where k ∈ {l1, . . . , lm}

9. casei�ζ ε of {kj ⇒ cj}
m
j=1 ↘ c if

ε ↘ k and ck ↘ c, where k ∈ {k1, . . . , km}

10. λi : σ � c ↘ λi : σ � c

11. c ε ↘ c′′ if

c ↘ λi : σ � c′ and {ε/i} c′ ↘ c′′

12. c : ζ ↘ c′ if

c ↘ c′

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 121

7.4. SEMANTICS

Evaluation only prepares propositions for proof. It does not provide any information

about whether a proposition is true. Truth of a proposition is given by the judgement

c true, which is defined only for propositions c satisfying c closed and ∅ `∅ c : Prop. Its

definition is

1. T true

2. (isTrue e) true if

e ↘ true

3. (e1 op e2) true if

e1 ↘ r1 and e2 ↘ r2 and r1 op r2, for op ∈ {=,≤}

4. (c1 ∨ c2) true if

either c1 true or c2 true

5. (c1 ∧ c2) true if

both c1 true and c2 true

6. (∃x : ρ � c) true if

{v/x} c true for some v ∈ ρ

7.
∨

i:σ

c true if

{η/i} c true for some η ∈ Sσ = {η1, . . . , ηm}

8.
∧

i:σ

c true if

{η/i} c true for all η ∈ Sσ = {η1, . . . , ηm}

9.
(

casei�ζ ε of {lj ⇒ cj}
m
j=1

)

true if
(

casei�ζ ε of {lj ⇒ cj}
m
j=1

)

↘ c and c true

10.
(

casei�ζ ε of {kj ⇒ cj}
m
j=1

)

true if
(

casei�ζ ε of {kj ⇒ cj}
m
j=1

)

↘ c and c true

11. c ε true if

c ε ↘ c′ and c′ true

12. c : ζ true if

c : ζ ↘ c′ and c′ true

Proving that ∃x : ρ �c is true requires proving that c is true for a particular value v, called

the witness, of x. We explained in Section 4.5 how this constructive view of propositional

truth coincides to current practice in mathematical programming.

Indexed disjunctive propositions are a generalization of binary disjunction and a special

case of existential propositions. The proposition
∨

i:σc is declared true if c can be proven

true for a witness η, a specific value of i.

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 122

7.4. SEMANTICS

Truth of
∧

i:σc follows from the truth of {η/i} c for every value η of i. This is directly a

generalization of binary conjunction.

Remaining forms are not canonical. Their truth is determined by evaluating them to a

canonical form and proving the truth of that form.

7.4.3 Solution of Program

Let p � roption mean program p has the solution roption. The outer syntactic form of a

program p is identical to that of unindexed programs. Correspondingly, the definition of

the solution to a program is identical to that in Section 4.5.3 on page 61. We do not repeat

it. Of course, that definition’s references to expression evaluation and propositional truth

now refer to those given above.

7.4.4 Open Forms

The meaning of an open construct can be explained only with respect to an assignment of

values for all its free variables. As with unindexed programs let

Ψ ::= ∅ | Ψ, x = v (7.24)

be a valuation for program variables. On page 95, the valuation Φ of index variables was

similarly defined.

The judgement Ψ `Φ e ↘ v means e, not necessarily closed, evaluates to v under the

valuations Ψ and Φ. Its definition is inductive on the forms of Ψ and Φ,

1. ∅ `∅ e ↘ v if

e ↘ v

2. ∅ `Φ,i=η e ↘ v if

∅ `Φ {η/i} e ↘ v

3. Ψ, x = v `Φ e ↘ v if

Ψ `Φ {v/x} e ↘ v

Similarly, let Ψ `Φ c true mean proposition c is true under the given valuations. Its

definition is analogous to expression evaluation,

1. ∅ `∅ c true if

c true

2. ∅ `Φ,i=η c true if

∅ `Φ {η/i} c true

3. Ψ, x = v `Φ c true if

Ψ `Φ {v/x} c true

A well-formed program must be closed. So we do not provide a corresponding judgement

for the solution of an open program.

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 123

7.5. RESULTS

7.5 Results

The overall goal of this chapter was to combine the unindexed programs of Chapter 4 and

the indexing logic of Chapter 6 into a theory of indexed programs. The syntax of the

programming language is now rich enough to enable modeling real systems. An application

is provided in Chapter 9. Here, we give smaller examples to demonstrate the new features.

Example 7.1 The following program is a simple use of indices,

1 var x : [{’a’,’b’,’c’}] -> real

2

3 min 0.0 subject_to

4 x[’d’] >= 0.0

A real variable indexed by the set {’a’,’b’,’c’} is introduced. Formally, it is a function variable

and can be applied to an index expression. In the constraint it is applied to the expression ’d’.

We check if the program satisfies p mp. It does not, and the following are (some of) the

error messages printed,

ERROR: expri not member of given typei

expri at 4.5-4.7: ’d’

typei at 1.10-1.22: {’a’,’b’,’c’}

MSG: unable to synthesize type, previous messages should explain why

contexti:

context: x:[{’a’,’b’,’c’}] -> real

expr at 4.3-4.8: x[’d’]

MSG: type analysis failed, previous messages should explain why

contexti:

context: x:[{’a’,’b’,’c’}] -> real

expr at 4.3-4.8: x[’d’]

type: real

The first message states that ’d’ is not in the set {’a’,’b’,’c’}. The judgement producing

this error is the canonical type checker on index expressions, `c’d’:{’a’,’b’,’c’}. The next

message states how this judgement was reached. It says that an attempt was being made to

synthesize the type of expression x[’d’]. Finally, the fourth message states that the synthesis

algorithm was called in attempt to check that this expression is of type real. Clearly, the

variable has been applied to an invalid index expression.

Example 7.2 The constraint

w = min (x1, . . . , xm) + 4.0

is not expressible in our language directly and is not considered an MP constraint. However,

the minimization function can be represented with a combination of conjunctive and disjunctive

constraints. The constraint in the following program is equivalent to the above.

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 124

7.5. RESULTS

1 var w : <10.0, 90.0>

2 var x : [{1,...,10}] -> <5.0, 75.0>

3

4 min w subject_to

5 (CONJ i:{1,...,10} . w <= x[i] + 4.0),

6 (DISJ i:{1,...,10} . w >= x[i] + 4.0)

We check the judgement p mp, and it is satisfied.

CHAPTER 7. INDEXED MATHEMATICAL PROGRAMS 125

Chapter 8

Compiling Indexed

Mathematical Programs

Chapter 5 defined a method for transforming unindexed mathematical programs to pure

mixed-integer programs. We now define an analogous procedure for indexed programs.

One possibility is to first eliminate the indices, and then use the compiler for unin-

dexed programs. The proposition
∧

i:{A,B} (x (i) ≥ 0) would be expanded to (x (A) ≥ 0) ∧

(x (B) ≥ 0), and the applications x (A) and x (B) would be replaced with variables xA and

xB . This is the current state-of-the-art. Indices are mere notational conveniences, and they

must be eliminated prior to sending models to algorithms, which do not accommodate them.

It is now possible to do better because indexed constructs are first class entities in our

theory. Retaining indices complicates the compiler definition. Conversion to conjunctive

normal form (CNF) is considered an established procedure, and our discussion of CNF

for unindexed programs, beginning on page 70, was largely tutorial. In contrast, for the

enhanced syntax now being considered, it is not even clear what a conjunctive normal form

is. We will define it and provide a procedure for converting to this form.

After this, the sub-language of indexed MIP is defined, and a compiler from indexed MP

to indexed MIP is provided.

8.1 Application Normal Form

It is difficult to define certain properties such as CNF and linearity in the presence of

functions. For example, let f be the function

λi : σ � casei�τ i of ‘A’ ⇒ x | ‘B’ ⇒ (x and z) or y (8.1)

Then we ask whether f ε is in conjunctive normal form? If ε is ‘A’, then we want to say yes,

but if it is ‘B’, then no. If it is an open expression, it is not clear what the answer should

be.

The general issue is that an expression’s CNF status seems not expressible in terms of its

constituent parts. Rather, an application’s CNF status requires evaluating the application,

126

8.1. APPLICATION NORMAL FORM

and considering whether the result is in CNF.

In this section, we define normalized applications, which have lambda expressions elim-

inated, and then provide a method for putting any application into this form. The form we

define is closely related to the concept of head normalized form, which arises in studies of

the λ-calculus (see e.g. Barendregt, 1984).

8.1.1 Definition of ANF

Let application form refer to the expression form e ε. The head position of e ε is e, and

λi : σ � e is called a lambda expression.

Remark 8.1. The head position of a well-formed application must be one of the following

forms:

• lone variable: x

• case expression: casei�τ ε of {lj ⇒ ej}
m
j=1, casei�τ ε of {kj ⇒ ej}

m
j=1

• lambda expression: λi : σ � e

• application: e ε

• ascription: e : τ

Proof. Easily seen by inspecting the definition of the typing judgement Γ `∆ e : τ .

Certain head positions are such that the application cannot be reduced further. We call

such an application an application normal form (ANF). Formally, let e anf be defined by

the rules

eanf ::= x ε | eanf ε (8.2)

For example, the application (x ε) ε′ is in anf. Since x is a variable whose value is

unknown, there is no way to reduce the application any further. On the other hand,

((λi : σ � e′) ε) ε′ could be reduced to ({ε/i} e′) ε′, and this might be further reduced de-

pending on whether {ε/i} e′ can be reduced.

The analogous judgement c anf is provided for propositions. However, since there are

no propositional variables, this relation is empty. This means it will always be possible to

eliminate a propositional application c ε. In contrast, it might not be possible to eliminate

the expression application e ε, but it can at least be put in anf.

8.1.2 Transformation to ANF

Given an application form, we define a procedure for eliminating the application form, or

at least converting it to an application normal form.

The overall procedure depends on a one-step reduction relation e1 hr e2. This is a

method for eliminating the outermost application form if possible. It is possible whenever

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 127

8.1. APPLICATION NORMAL FORM

the head position is not a normalized head. Its definition consists of a rule for each possible

head position form except a variable,

(λi : σ � e) ε hr {ε/i} e
β-reduction (8.3a)

e ε′ hr e′

(e ε′) ε hr e′ ε
(8.3b)

(

casei�τ ε′ of {lj ⇒ ej}
m
j=1

)

ε hr casei�τ ε′ of {lj ⇒ ej ε}m
j=1

(8.3c)

(

casei�τ ε′ of {kj ⇒ ej}
m
j=1

)

ε hr casei�τ ε′ of {kj ⇒ ej ε}m
j=1

(8.3d)

(e : τ) ε hr e ε
(8.3e)

In the first rule, a lambda expression is being applied. Reduction is by performing the

application, called β-reduction. In the second rule, the head position is itself an application

form. This rule just reduces the head position. If a case expression is being applied, each

branch must itself be of a function type. It is equivalent to move the application into each

branch. This leads to an expansion in program size because the applied argument is being

replicated. Finally, the ascription in an ascribed expression can be disregarded.

Let e1 6 hr e2 mean, for a given e1, there does not exist an e2 such that e1 hr e2. Since

there is no e2, it is intuitive to abbreviate the notation to e1 6 hr, meaning e1 does not head

reduce.

As the name implies, one-step reduction produces expressions whose head positions might

be further reduced. The judgement e1 e2 relates e1 to an expression e2 that either is not

an application form or satisfies e2 anf. Its definition is

e 6 hr

e e
(8.4a)

e hr e′ e′ e′′

e e′′
(8.4b)

The first rule checks whether a one-step reduction is possible. If not, application normaliza-

tion is complete. If reduction is possible, the second rule does so and recursively attempts

further reduction.

Lemma 8.2. If e1 6 hr, then either:

1. e1 is not an application form, or

2. e1 is an application form satisfying anf.

Proof. None of the rules defining hr are for non-application forms. So this is certainly

one reason that e1 might not reduce. The second property states that if it is an application

form, the only reason it would not reduce is if e1 anf is true. This is proven by induction

on the head position of an application form:

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 128

8.1. APPLICATION NORMAL FORM

1. The head position of e1 is a lone variable, i.e. e1 is x ε. There are no rules for

applications in this form. Thus, e1 6 hr, and it is easily seen that e1 anf.

2. The head position of e1 is a lambda expression, case expression, or ascription. The

rules for these forms have no preconditions. Thus, e1 6 hr is never true, making the

lemma trivially true.

3. The head position of e1 is itself an application, i.e. e1 is (e2 ε′) ε. This form will not

reduce if (e2 ε′) does not, as seen from the rule for the form (e2 ε′) ε. By inductive

hypothesis, (e2 ε′) is either not an application or satisfies anf. Clearly, it is an ap-

plication and so (e2 ε′) anf must be true. Finally, from the definition of anf, this

implies (e2 ε′) ε anf.

Theorem 8.3 (Correctness). If e e′′, then either:

1. e′′ is not an application form, or

2. e′′ is an application form satisfying anf.

Proof. Two rules define . In the first, e′′ is e; the expression is returned unmodified. The

precondition requires e 6 hr, and thus the result follows from Lemma 8.2. In the second

rule, e′′ is such that e′ e′′. By inductive hypothesis, e′′ is not an application form or

satisfies anf.

Let c1 c2 be a head normalization procedure for propositions. Its definition is precisely

analogous to that for expressions. The above theorem can be made more specific. Consider

a proposition c1 that is an application form c ε. If c1 c2, then c2 is not an application

form. This is simply because c anf is empty.

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 129

8.2. SUB-LANGUAGES

8.2 Sub-Languages

8.2.1 Indexed Mixed-Integer Programs

The following restricted syntaxes define indexed mixed-integer programs (MIPs):

τmip ::= real | i : σ → τmip (8.5)

ρmip ::= 〈rL, rU 〉 | 〈rL,∞) | (−∞, rU 〉 | real

| [rL, rU] | [rL,∞) | (−∞, rU] | int

| i : σ → ρmip (8.6)

emip ::= x | r

| −emip | emip

1 + emip

2 | emip

1 − emip

2 | emip

1 ∗ emip

2

|
∑

i:σ

emip

| casei�τmip ε of
{
lj ⇒ emip

j

}m

j=1
| casei�τmip ε of

{
kj ⇒ emip

j

}m

j=1

| λi : σ � emip | emip ε

| emip : τmip (8.7)

cmip ::= T | F

| emip

1 = emip

2 | emip

1 ≤ emip

2

| cmip

1 ∧ cmip

2

| ∃x : ρmip � cmip

|
∧

i:σ

cmip

| casei�ζ ε of
{
lj ⇒ cmip

j

}m

j=1
| casei�ζ ε of

{
kj ⇒ cmip

j

}m

j=1

| λi : σ � cmip | cmip ε

| cmip : ζ (8.8)

ζmip ::= ζ (8.9)

pmip ::= δx1:ρmip

1
,...,xm:ρmip

m
{emip | cmip} (8.10)

Υmip ::= ∅ | Υmip, x : ρmip (8.11)

Ψmip ::= ∅ | Ψmip, x = vmip (8.12)

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 130

8.2. SUB-LANGUAGES

The judgement style, e.g. p mip, will also be used. The basic restrictions are the elimination

of the bool type, Boolean expressions, and binary and indexed disjunctions. There are no

restrictions on propositional types.

8.2.2 Indexed Linearity

We now extend the concept of linearity, originally discussed on page 69, to indexed programs.

Conceptually, a linear expression is a numerical expression, i.e. of type real, in which two

variables are never multiplied. The concept of linearity does not apply to function types.

Whether λi : σ � x (i) + 1.0 is linear should never be asked. The expression x (i) + 1.0 by

itself is considered linear. Although it contains a function variable, it is a variable applied

to an index. The properties normally associated with linear systems are preserved under

such application forms.

Let e be an expression that satisfies Γ `∆ e : real or Γ `∆ e : bool for some Γ and ∆.

Given such an e, let e linear mean e can be transformed to a linear numerical expression.

Its definition is

x linear
(8.13a)

r linear
(8.13b)

true linear
(8.13c)

false linear
(8.13d)

e linear

−e linear
(8.13e)

e1 linear e2 linear

e1 + e2 linear
(8.13f)

e1 linear e2 linear

e1 − e2 linear
(8.13g)

e1 ∗ e2 linear
if FV (e1 ∗ e2) = ∅ (8.13h)

e2 linear

e1 ∗ e2 linear
if FV (e1) = ∅ (8.13i)

e1 linear

e1 ∗ e2 linear
if FV (e2) = ∅ (8.13j)

not e linear
(8.13k)

e1 or e2 linear
(8.13l)

e1 and e2 linear
(8.13m)

e linear
∑

i:σ

e linear
(8.13n)

{ej linear}m
j=1

casei�τ ε of {lj ⇒ ej}
m
j=1 linear

(8.13o)

{ej linear}m
j=1

casei�τ ε of {kj ⇒ ej}
m
j=1 linear

(8.13p)

e ε e′ e′ anf

e ε linear
(8.13q)

e ε e′ e′ ¬anf e′ linear

e ε linear
(8.13r)

e linear

e : τ linear
(8.13s)

The interesting rules are the two for the application forms. Each of these applies to

convert the application to an expression e′. Theorem 8.3 guarantees that either e′ anf is

true or e′ is not an application, which implies e′ ¬anf. Any expression e′ satisfying e′ anf

is declared linear. If e′ is not an application, its linearity is determined by recursion.

Consider a proposition c that satisfies c mp and Γ `∆ c : Prop for some Γ and ∆. Then,

let c linear mean every expression e within c can be transformed into a linear numerical

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 131

8.3. INDEXED CONJUNCTIVE NORMAL FORM

expression. Its definition is

T linear
(8.14a)

F linear
(8.14b)

e linear

isTrue e linear
(8.14c)

e1 linear e2 linear

e1 = e2 linear
(8.14d)

e1 linear e2 linear

e1 ≤ e2 linear
(8.14e)

c1 linear c2 linear

c1 ∨ c2 linear
(8.14f)

c1 linear c2 linear

c1 ∧ c2 linear
(8.14g)

c linear

∃x : ρ � c linear
(8.14h)

c linear
∨

i:σ

c linear

(8.14i)

c linear
∧

i:σ

c linear

(8.14j)

{cj linear}m
j=1

casei�ζ ε of {lj ⇒ cj}
m
j=1 linear

(8.14k)

{cj linear}m
j=1

casei�ζ ε of {kj ⇒ cj}
m
j=1 linear

(8.14l)

c ε c′ c′ linear

c ε linear
(8.14m)

c linear

c : ζ linear
(8.14n)

The rule for the application form normalizes the application. With propositions, this

is guaranteed to produce a c′ that is not an application form. The precondition declares

the application linear if c′ is. All other rules simply recurse on their nested expressions and

propositions.

Finally, given a program p satisfying p mp, let p linear be defined by the rule

e linear c linear

δx1:ρ1,...,xm:ρm
{e | c} linear

(8.15)

8.3 Indexed Conjunctive Normal Form

In Section 5.2, we presented a definition of CNF and a method for transforming to CNF

for unindexed expressions. Defining conjunctive normal forms on indexed expressions is

significantly more complex. Certain matters that were too obvious to state in the unindexed

theory must now be addressed explicitly. Care must be taken to define CNF in the presence

of case expressions and functions.

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 132

8.3. INDEXED CONJUNCTIVE NORMAL FORM

8.3.1 Definition of Indexed CNF

Let e literal be defined by the rules

x literal
(8.16a)

true literal
(8.16b)

false literal
(8.16c)

e literal

not e literal
(8.16d)

{ej literal}m
j=1

casei�τ ε of {lj ⇒ ej}
m
j=1 literal

(8.16e)

{ej literal}m
j=1

casei�τ ε of {kj ⇒ ej}
m
j=1 literal

(8.16f)

e ε anf

e ε literal
(8.16g)

e literal

e : τ literal
(8.16h)

A case expression is a literal if all of its branches are. We also declare expressions in ANF

to be literals. The justification for this is simply that it works. It leads to a definition that

allows converting expressions in CNF to linear integer propositions.

Let e dlf be defined by the rules

e literal

e dlf
(8.17a)

e1 dlf e2 dlf

e1 or e2 dlf
(8.17b)

{ej dlf}m
j=1

casei�τ ε of {lj ⇒ ej}
m
j=1 dlf

(8.17c)

{ej dlf}m
j=1

casei�τ ε of {kj ⇒ ej}
m
j=1 dlf

(8.17d)

e dlf

e : τ dlf
(8.17e)

Literal forms are also disjunctive literal forms. Binary and indexed disjunctions are in DLF

if their disjuncts are. Case expressions are in DLF if all their branches are.

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 133

8.3. INDEXED CONJUNCTIVE NORMAL FORM

Finally, let e cnf be defined by the rules

e dlf

e cnf
(8.18a)

e1 cnf e2 cnf

e1 and e2 cnf
(8.18b)

{ej cnf}m
j=1

casei�τ ε of {lj ⇒ ej}
m
j=1 cnf

(8.18c)

{ej cnf}m
j=1

casei�τ ε of {kj ⇒ ej}
m
j=1 cnf

(8.18d)

e cnf

e : τ cnf
(8.18e)

Conceptually, conjunctive normal forms are conjunctions of disjunctive literal forms.

Certain judgements on cnf expressions will depend on whether the expression is or is

not a dlf expression. Let e conj′ be defined by the rule

e cnf e ¬dlf

e conj′
(8.19)

conj′ expressions are cnf expressions that are not dlf. On page 71, we gave the correspond-

ing definition for unindexed programs. The syntactic forms of the expressions satisfying that

judgement were rather obvious. It is less clear in the indexed case.

Given e cnf, let e conj be a more direct definition of the same judgement. The definition

is

e1 and e2 conj
(8.20a)

ek conj

casei�τ ε of {lj ⇒ ej}
m
j=1 conj

for k ∈ {1, . . . ,m} (8.20b)

ek conj

casei�τ ε of {kj ⇒ ej}
m
j=1 conj

for k ∈ {1, . . . ,m} (8.20c)

e conj

e : τ conj
(8.20d)

The idea is that e conj is satisfied by expressions having occurrences of and.

Figure 8.1 shows how the various judgements are related, and the following theorems

prove that the figure is drawn correctly.

Lemma 8.4. dlf and conj are mutually exclusive. Precisely, if e dlf then e ¬conj, and

if e conj then e ¬dlf.

Proof. It is easy to see that conj expressions must contain an and expression within them,

and that dlf expressions cannot.

Definition (Partition). Judgements Jj for j ∈ {1, . . . ,m} partition some other judgement

J if both

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 134

8.3. INDEXED CONJUNCTIVE NORMAL FORM

All Boolean Expressions

cnf

conj dlf

Figure 8.1: Venn diagram of various forms of Boolean expressions.

1. Jj implies J for every j ∈ {1, . . . ,m}, and

2. J implies Jk for exactly one k ∈ {1, . . . ,m}.

Theorem 8.5. e dlf and e conj partition e cnf.

Proof. e dlf implies e cnf. This is obvious from the first rule defining cnf. Also, e conj

implies e cnf is obvious because that is explicitly stated as a precondition of conj.

Now we prove the second requirement, that e cnf implies either e dlf or e conj, but

not both. It suffices to show that e cnf implies either e dlf or e conj. Mutual exclusivity

was provided by Lemma 8.4. The proof is by induction on the definition of cnf.

1. The first rule defining cnf declares any dlf expression to be cnf. Expressions deter-

mined to be in cnf because of this rule thus immediately are seen to be in dlf.

2. Next, the expression e1 and e2 can be in cnf if both e1 and e2 are. This expression is

seen to be in conj by the first rule defining conj.

3. A case expression casei�τ ε of {lj ⇒ ej}
m
j=1 is in cnf if all ej are. By inductive

hypothesis, each ej is either in conj or in dlf, but not both. The possibilities can

be split into two categories: either all ej dlf, or not. If the former, then the whole

case expression is in dlf. If the latter, then at least one particular ej , say ek, is in

conj. Then, we can see that the third rule defining conj applies, and the whole case

expression is in conj. Of course, the argument is identical for case expressions with

integer handles.

4. An ascribed expression e : τ is in cnf if e is. The result follows immediately by IH.

Corollary 8.6. conj′ and conj are equivalent.

Proof. From the previous theorem, conj includes exactly those cnf expressions that are

not dlf, which is explicitly the definition of conj′.

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 135

8.3. INDEXED CONJUNCTIVE NORMAL FORM

8.3.2 Transforming to Indexed CNF

Consider e1 such that Γ `∆ e : bool in some contexts Γ and ∆. Then, let e1 y e2 mean e1

is transformed to e2 such that e2 cnf. The definition of y is

e cnf

e y e
(8.21a)

e ¬cnf e1 y∗ e2

e1 y e2
(8.21b)

which makes use of the auxiliary relation y∗.

Given e1 ¬cnf, the judgement e1 y∗ e2 provides e2 such that e2 cnf. Its definition is

not e1
not
y∗ e′

not e1 y∗ e′
(8.22a)

e1 or e2
or

y∗ e′

e1 or e2 y∗ e′
(8.22b)

{
ej y e′j

}2

j=1

e1 and e2 y∗ e′1 and e′2
(8.22c)

{
ej y e′j

}m

j=1

casei�τ ε of {lj ⇒ ej}
m
j=1 y∗ casei�τ ε of

{
lj ⇒ e′j

}m

j=1

(8.22d)

{
ej y e′j

}m

j=1

casei�τ ε of {kj ⇒ ej}
m
j=1 y∗ casei�τ ε of

{
kj ⇒ e′j

}m

j=1

(8.22e)

e ε e′ e′ y e′′

e ε y∗ e′′
(8.22f)

e y∗ e′

e : τ y∗ e′ : τ
(8.22g)

Special handling is required when e1 is of the form not e′, or of the form e′1 or e′2. These

forms have been separated into judgements defined next. Conjunctive and case expressions

are converted to CNF by converting their nested expressions. Applications are first head nor-

malized. This will either produce an ANF, which is immediately CNF, or a non-application

form, which will be inductively converted. The ascription on an ascribed expression is simply

disregarded.

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 136

8.3. INDEXED CONJUNCTIVE NORMAL FORM

Now consider the conversion of not e, given by the judgement not e
not
y∗ e′, which depends

further on the form of e in not e. Its definition is

e y e′

not not e
not
y∗ e′

(8.23a)

(not e1) and (not e2) y e′

not (e1 or e2)
not
y∗ e′

(8.23b)

(not e1) or (not e2) y e′

not (e1 and e2)
not
y∗ e′

(8.23c)

casei�τ ε of {lj ⇒ not ej}
m
j=1 y e′

not
(

casei�τ ε of {lj ⇒ ej}
m
j=1

)
not
y∗ e′

(8.23d)

casei�τ ε of {kj ⇒ not ej}
m
j=1 y e′

not
(

casei�τ ε of {kj ⇒ ej}
m
j=1

)
not
y∗ e′

(8.23e)

e ε e′ not e′ y e′′

not e ε
not
y∗ e′′

(8.23f)

not e y e′

not (e : τ)
not
y∗ e′

(8.23g)

In the first rule, we are simply eliminating the double negation. The rules for negating or

and and expressions employ DeMorgan’s laws. Negation of case expressions is equivalent

to negating each of the case’s branches. Negation of an application form is handled by

normalizing the application. Negation of an ascribed expression disregards the ascription.

Finally, an or expression is converted by the judgement (e1 or e2)
or

y∗ e′. Its definition

is

e1 conj e1 or e2
or−conj

y∗ e′

e1 or e2
or

y∗ e′
(8.24a)

e2 conj e2 or e1
or−conj

y∗ e′

e1 or e2
or

y∗ e′
(8.24b)

e1 ¬cnf e1 y e′1 e′1 or e2 y e′

e1 or e2
or

y∗ e′
(8.24c)

e2 ¬cnf e2 y e′2 e1 or e′2 y e′

e1 or e2
or

y∗ e′
(8.24d)

When either disjunct is in conj, the judgement
or−conj

y∗ , defined next, is used. If either is

not in cnf, it is first converted to CNF and the judgement called recursively. These are the

only possibilities, as given by the following lemma.

Lemma 8.7. Given (e1 or e2) ¬cnf, one of the following must be true:

1. e1 conj, or e2 conj, or

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 137

8.4. COMPILING INDEXED MP TO INDEXED MIP

2. e1 ¬cnf, or e2 ¬cnf.

Proof. Since (e1 or e2) ¬cnf, both e1 dlf and e2 dlf cannot be true. The result thus

follows directly from Figure 8.1.

Finally, given e1 conj, let (e1 or e2)
or−conj

y∗ e′ be the conversion of e1 or e2. Its definition

is dependent on the possible forms of e1, which were given by rules (8.20). The definition is

(e11 or e2) and (e12 or e2) y e′

(e11 and e12) or e2
or−conj

y∗ e′
(8.25a)

(

casei�τ ε of {lj ⇒ ej or e2}
m
j=1

)

y e′

(

casei�τ ε of {lj ⇒ ej}
m
j=1

)

or e2
or−conj

y∗ e′
(8.25b)

(

casei�τ ε of {kj ⇒ ej or e2}
m
j=1

)

y e′

(

casei�τ ε of {kj ⇒ ej}
m
j=1

)

or e2
or−conj

y∗ e′
(8.25c)

e or e2
or−conj

y∗ e′

(e : τ) or e2
or−conj

y∗ e′
(8.25d)

The first rule distributes disjunction over conjunction. The second two handle case expres-

sions by replicating the disjunction in each branch.

8.4 Compiling Indexed MP to Indexed MIP

As discussed in Appendix A, the compilation of a mathematical program requires all dis-

juncts to be bounded. We enforce this by requiring all variables within a disjunct to have

known bounds. As in the compilation of unindexed programs, let Υ ` c DisjVarsBounded

mean Υ contains bounds for all variables free in or existentially introduced within any of

the disjuncts in c. The judgement is defined only for c such that Υ `∆ c : Prop is true. Its

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 138

8.4. COMPILING INDEXED MP TO INDEXED MIP

definition is

Υ ` T DisjVarsBounded
(8.26a)

Υ ` F DisjVarsBounded
(8.26b)

Υ ` isTrue e DisjVarsBounded
(8.26c)

Υ ` e1 op e2 DisjVarsBounded
where op ∈ {=,≤} (8.26d)

{ρj bounded}m
j=1 {cj ExistVarsBounded}2

j=1

Υ ` c1 ∨ c2 DisjVarsBounded

where FV (c1 ∨ c2) = {x1, . . . , xm} , and Υ (xj) = ρj (8.26e)

Υ ` c1 DisjVarsBounded Υ ` c2 DisjVarsBounded

Υ ` c1 ∧ c2 DisjVarsBounded
(8.26f)

Υ, x : ρ ` c DisjVarsBounded

Υ ` ∃x : ρ � c DisjVarsBounded
(8.26g)

{ρj bounded}m
j=1 c ExistVarsBounded

Υ `
∨

i:σ

c DisjVarsBounded

where FV (c) = {x1, . . . , xm} , and Υ (xj) = ρj (8.26h)

Υ ` c DisjVarsBounded

Υ `
∧

i:σ

c DisjVarsBounded

(8.26i)

{Υ ` cj DisjVarsBounded}m
j=1

Υ ` casei�ζ ε of {lj ⇒ cj}
m
j=1 DisjVarsBounded

(8.26j)

{Υ ` cj DisjVarsBounded}m
j=1

Υ ` casei�ζ ε of {kj ⇒ cj}
m
j=1 DisjVarsBounded

(8.26k)

c ε c′ Υ ` c′ DisjVarsBounded

Υ ` c ε DisjVarsBounded
(8.26l)

Υ ` c DisjVarsBounded

Υ ` c : ζ DisjVarsBounded
(8.26m)

Indexed disjunction is treated like binary disjunction. All free variables in the disjunct

must have known bounds in the given context. The judgement c ExistVarsBounded,

defined next, checks if variables introduced within the disjunct have bounds. Conjunctive

and case propositions inductively check their nested propositions. Applications are handled

in the usual way; they are reduced to ANF, and then checked inductively.

Given c such that Υ `∆ c : Prop, let c ExistVarsBounded mean variables existentially

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 139

8.4. COMPILING INDEXED MP TO INDEXED MIP

introduced within c are bounded. Its definition is

T ExistVarsBounded
(8.27a)

F ExistVarsBounded
(8.27b)

isTrue e ExistVarsBounded
(8.27c)

e1 op e2 ExistVarsBounded
where op ∈ {=,≤} (8.27d)

{cj ExistVarsBounded}2
j=1

c1 op c2 ExistVarsBounded
where op ∈ {∨,∧} (8.27e)

ρ bounded c ExistVarsBounded

∃x : ρ � c ExistVarsBounded
(8.27f)

c ExistVarsBounded

OP
i:σ

c ExistVarsBounded
for OP ∈ {

∨
,
∧
} (8.27g)

{cj ExistVarsBounded}m
j=1

casei�ζ ε of {lj ⇒ cj}
m
j=1 ExistVarsBounded

(8.27h)

{cj ExistVarsBounded}m
j=1

casei�ζ ε of {kj ⇒ cj}
m
j=1 ExistVarsBounded

(8.27i)

c ε c′ c′ ExistVarsBounded

c ε ExistVarsBounded
(8.27j)

c ExistVarsBounded

c : ζ ExistVarsBounded
(8.27k)

Finally, let p DisjVarsBounded mean all variables in all disjunctions in program p

have known bounds. Its definition is

x1 : ρ1, . . . , xm : ρm ` c DisjVarsBounded

δx1:ρ1,...,xm:ρm
{e | c} DisjVarsBounded

(8.28)

Our compiler is defined only for programs satisfying this requirement.

8.4.1 Type Compiler

Let τ
type
7−→ τmip be a type compiler. Its definition is

real
type
7−→ real

(8.29)

bool
type
7−→ real

(8.30)

τ
type
7−→ τ ′

(i : σ → τ)
type
7−→ (i : σ → τ ′)

(8.31)

Let ρ
rtype
7−→ ρmip be a refined type compiler,

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 140

8.4. COMPILING INDEXED MP TO INDEXED MIP

〈rL, rU 〉
rtype
7−→ 〈rL, rU 〉

(8.32a)

〈rL,∞)
rtype
7−→ 〈rL,∞)

(8.32b)

(−∞, rU 〉
rtype
7−→ (−∞, rU 〉

(8.32c)

real
rtype
7−→ real

(8.32d)

[rL, rU]
rtype
7−→ [rL, rU]

(8.32e)

[rL,∞)
rtype
7−→ [rL,∞)

(8.32f)

(−∞, rU]
rtype
7−→ (−∞, rU]

(8.32g)

int
rtype
7−→ int

(8.32h)

{true}
rtype
7−→ [1, 1]

(8.32i)

{false}
rtype
7−→ [0, 0]

(8.32j)

bool
rtype
7−→ [0, 1]

(8.32k)

ρ
rtype
7−→ ρ′

(i : σ → ρ)
rtype
7−→ (i : σ → ρ′)

(8.32l)

8.4.2 Expression Compiler

Only expressions in conj and dlf need to be compiled.

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 141

8.4. COMPILING INDEXED MP TO INDEXED MIP

8.4.2.1 DLF Expression Compiler

Let edlf dlf
7−→ emip be a judgement converting DLF expressions to MIP expressions. Its

definition is

x
dlf
7−→ x

(8.33a)

true
dlf
7−→ 1

(8.33b)

false
dlf
7−→ 0

(8.33c)

e
dlf
7−→ e′

not e
dlf
7−→ 1 − e′

(8.33d)

e1
dlf
7−→ e′1 e2

dlf
7−→ e′2

e1 or e2
dlf
7−→ e′1 + e′2

(8.33e)

τ
type
7−→ τ ′

{

ej
dlf
7−→ e′j

}m

j=1

casei�τ ε of {lj ⇒ ej}
m
j=1

dlf
7−→ casei�τ ′ ε of

{
lj ⇒ e′j

}m

j=1

(8.33f)

τ
type
7−→ τ ′

{

ej
dlf
7−→ e′j

}m

j=1

casei�τ ε of {kj ⇒ ej}
m
j=1

dlf
7−→ casei�τ ′ ε of

{
kj ⇒ e′j

}m

j=1

(8.33g)

e ε
dlf
7−→ e ε

(8.33h)

e
dlf
7−→ e′

e : τ
dlf
7−→ e′

(8.33i)

8.4.2.2 CONJ Expression Compiler

Let econj conj
7−→ cmip be a judgement converting CONJ expressions to MIP propositions. Its

definition is

{

∅ ` isTrue ej
prop
7−→ cj

}2

j=1

e1 and e2
conj
7−→ c1 ∧ c2

(8.34a)

{

∅ ` isTrue ej
prop
7−→ cj

}m

j=1

casei�τ ε of {lj ⇒ ej}
m
j=1

conj
7−→ casei�Prop ε of {lj ⇒ cj}

m
j=1

(8.34b)

{

∅ ` isTrue ej
prop
7−→ cj

}m

j=1

casei�τ ε of {kj ⇒ ej}
m
j=1

conj
7−→ casei�Prop ε of {kj ⇒ cj}

m
j=1

(8.34c)

∅ ` isTrue e
prop
7−→ c

e : bool
conj
7−→ c : Prop

(8.34d)

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 142

8.4. COMPILING INDEXED MP TO INDEXED MIP

8.4.3 Proposition Compiler

Let Υ ` c
prop
7−→ cmip be a proposition compiler.

Υ ` T
prop
7−→ T

(8.35a)

Υ ` F
prop
7−→ F

(8.35b)

e y e′ e′ dlf e′
dlf
7−→ e′′

Υ ` isTrue e
prop
7−→ e′′ ≥ 1

(8.35c)

e y e′ e′ conj e′
conj
7−→ c′

Υ ` isTrue e
prop
7−→ c′

(8.35d)

Υ ` e1 op e2
prop
7−→ e′1 op e′2

for op ∈ {=,≤} (8.35e)

Υ ` c1 ∨ c2
disj
7−→ c′

Υ ` c1 ∨ c2
prop
7−→ c′

(8.35f)

Υ ` c1
prop
7−→ c′1 Υ ` c2

prop
7−→ c′2

Υ ` c1 ∧ c2
prop
7−→ c′1 ∧ c′2

(8.35g)

ρ
rtype
7−→ ρ′ Υ, x : ρ′ ` c

prop
7−→ c′

Υ ` ∃x : ρ � c
prop
7−→ ∃x : ρ′ � c′

(8.35h)

Υ `
∨

i:σ

c
disj
7−→ c′

Υ `
∨

i:σ

c
prop
7−→ c′

(8.35i)

Υ ` c
prop
7−→ c′

Υ `
∧

i:σ

c
prop
7−→

∧

i:σ

c′
(8.35j)

{

Υ ` cj
prop
7−→ c′j

}m

j=1

Υ ` casei�ζ ε of {lj ⇒ cj}
m
j=1

prop
7−→ casei�ζ ε of

{
lj ⇒ c′j

}m

j=1

(8.35k)

{

Υ ` cj
prop
7−→ c′j

}m

j=1

Υ ` casei�ζ ε of {kj ⇒ cj}
m
j=1

prop
7−→ casei�ζ ε of

{
kj ⇒ c′j

}m

j=1

(8.35l)

c ε c′ Υ ` c′
prop
7−→ c′′

Υ ` c ε
prop
7−→ c′′

(8.35m)

Υ ` c
prop
7−→ c′

Υ ` c : ζ
prop
7−→ c′ : ζ

(8.35n)

The definition for unindexed syntactic forms are identical to those given in Chapter 4. The

indexed disjunction and conjunction, and case propositions are compiled by compiling their

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 143

8.4. COMPILING INDEXED MP TO INDEXED MIP

nested constructs. Applications are first put into anf, the standard technique being used

in all judgements.

8.4.4 Disjunctive Proposition Compiler

Let Υ ` c(c′ be a judgement adding to c bounding propositions for all variables free in

c, returning the result as c′. Its definition is

{xj : ρj w cj}
m
j=1

Υ ` c((c1 ∧ · · · ∧ cm ∧ c)
(8.36)

where FV (c) = {x1, . . . , xm} and Υ (xj) = ρj for j = 1, . . . ,m. The x : ρ w c relation was

defined in Section 7.3. It provides a proposition c corresponding to the bounds declared by

ρ.

Let e~e1 ↪→ e2 be a judgement which multiplies e to all constant terms in e1, producing

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 144

8.4. COMPILING INDEXED MP TO INDEXED MIP

e2. Its definition is

e~ x ↪→ x
(8.37a)

e~ r ↪→ e ∗ r
(8.37b)

e~ e1 ↪→ e2

e~−e1 ↪→ −e2
(8.37c)

e~ e1 ↪→ e′1 e~ e2 ↪→ e′2
e~ (e1 op e2) ↪→ (e′1 op e′2)

for op ∈ {+,−} (8.37d)

e~ (e1 ∗ e2) ↪→ e ∗ (e1 ∗ e2)
if FV (e1 ∗ e2) = ∅ (8.37e)

e~ (x1 ∗ e2) ↪→ (x1 ∗ e2)
(8.37f)

e~ (e1 ∗ x2) ↪→ (e1 ∗ x2)
(8.37g)

e1 anf

e~ (e1 ∗ e2) ↪→ (e1 ∗ e2)
(8.37h)

e2 anf

e~ (e1 ∗ e2) ↪→ (e1 ∗ e2)
(8.37i)

e1 ¬anf e~ e1 ↪→ e′1
e~ (e1 ∗ e2) ↪→ (e′1 ∗ e2)

if FV (e1) 6= ∅, e1 not x (8.37j)

e2 ¬anf e~ e2 ↪→ e′2
e~ (e1 ∗ e2) ↪→ (e1 ∗ e′2)

if FV (e2) 6= ∅, e2 not x (8.37k)

e~ e1 ↪→ e2

e~
∑

i:σ

e1 ↪→
∑

i:σ

e2
where i 6∈ FV (e) (8.37l)

{
e~ ej ↪→ e′j

}m

j=1

e~ casei�τ ε of {lj ⇒ ej}
m
j=1 ↪→ casei�τ ε of

{
lj ⇒ e′j

}m

j=1

(8.37m)

{
e~ ej ↪→ e′j

}m

j=1

e~ casei�τ ε of {kj ⇒ ej}
m
j=1 ↪→ casei�τ ε of

{
kj ⇒ e′j

}m

j=1

(8.37n)

e1 ε anf

e~ e1 ε ↪→ e1 ε
(8.37o)

e1 ε ¬anf e1 ε e′ e~ e′ ↪→ e′′

e~ e1 ε ↪→ e′′
(8.37p)

e~ e1 ↪→ e2

e~ e1 : τ ↪→ e2 : τ
(8.37q)

In the rule for e~
∑

i:σ e1, index i must be α-converted if i is free in e.

Let e ~ c1 ↪→ c2 be a corresponding judgement on a proposition. Its definition is by

induction on the form of c1 and simply recurses on nested propositions and expressions.

Attention must be paid to α-conversion when recursing into index constraints. Its definition

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 145

8.4. COMPILING INDEXED MP TO INDEXED MIP

is

e~ T ↪→ T
(8.38a)

e~ F ↪→ F
(8.38b)

e~ e1 ↪→ e2

e~ (isTrue e1) ↪→ (isTrue e2)
(8.38c)

e~ e11 ↪→ e21 e~ e12 ↪→ e22

e~ (e11 op e12) ↪→ (e21 op e22)
for op ∈ {=,≤} (8.38d)

e~ c11 ↪→ c21 e~ c12 ↪→ c22

e~ (c11 op c12) ↪→ (c21 op c22)
for op ∈ {∨,∧} (8.38e)

e~ c1 ↪→ c2

e~ (∃x : ρ � c1) ↪→ (∃x : ρ � c1)
where x 6∈ FV (e) (8.38f)

e~ c1 ↪→ c2

e~
(

OP
i:σ

c1

)

↪→
(

OP
i:σ

c2

) for OP ∈ {
∨

,
∧
} , where i 6∈ FV (e) (8.38g)

{
e~ cj ↪→ c′j

}m

j=1

e~ casei�ζ ε of {lj ⇒ cj}
m
j=1 ↪→ casei�ζ ε of

{
lj ⇒ c′j

}m

j=1

(8.38h)

{
e~ cj ↪→ c′j

}m

j=1

e~ casei�ζ ε of {kj ⇒ cj}
m
j=1 ↪→ casei�ζ ε of

{
kj ⇒ c′j

}m

j=1

(8.38i)

c1 ε c′ e~ c′ ↪→ c2

e~ c1 ε ↪→ c2
(8.38j)

e~ c1 ↪→ c2

e~ c1 : ζ ↪→ c2 : ζ
(8.38k)

A variable x of type ρ will be disaggregated into a variable x′ of type i : σ → ρ, where

the disjunction is indexed over σ. Let x : ρmip V x′
i:σ # c be a judgement providing a

proposition c that relates the original and disaggregated variables. Its definition is

xx : ρmip V x′
i:σ #

∗ c

x : ρmip V x′
i:σ # c

(8.39)

which relies on a helper judgement ex : ρmip V x′
i:σ #

∗ c that involves an extra construct e.

Its definition is inductive on the form of ρmip,

ex : ρV x′
i:σ #

∗

(

e =
∑

i:σ

{x′ i/x} e

) where ρ is any numeric type (8.40a)

(e i′)x : ρ′ V x′
i:σ #

∗ c

ex : (i′ : σ′ → ρ′)V x′
i:σ #

∗
∧

i′:σ′

c
where i′ 6∈ FV (e) (8.40b)

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 146

8.5. RESULTS

Let Υ ` c1
disj
7−→ c2 be a disjunctive proposition compiler.

Υ `




∨

i:[1,2]

case i of 1 ⇒ cA | 2 ⇒ cB




disj
7−→ c′

Υ ` (cA ∨ cB)
disj
7−→ c′

where i 6∈ FV (cA ∨ cB) (8.41a)

Υ ` c
prop
7−→ c′ Υ

ctxt
7−→ Υ′

Υ′ ` c′(c′′ (y i)~ {(~x′ i) /~x} c′′ ↪→ c′′′
{
xj : ρj V x′

j,i:σ # c∗j
}m

j=1

Υ `
∨

i:σ

c
disj
7−→






∃~x′ : (i : σ → ~ρ) � ∃y : (i : σ → [0, 1]) �

(c∗1 ∧ · · · ∧ c∗m) ∧

(
∑

i:σ

y i = 1

)

∧
∧

i:σ

c′′′






(8.41b)

Binary disjunction could have been handled as in the unindexed theory, but instead we

convert it into an indexed disjunction and allow the second rule to produce the result.

The compiler for indexed disjunctions generates a disaggregated variable x′ to replace each

variable x, but x′ is of type i : σ → ρ. So we can think of x′ i as the variable associated

with the ith disjunct. Similarly, y : (i : σ → [0, 1]) allows us to think of y i as the binary

associated with each disjunct.

The preconditions are similar to that in the unindexed theory. The disjunct c is itself

compiled first. This produces c′ that will satisfy c′ mip. Then (is employed to add

bounding propositions, each x is replaced with x′ i, and constant terms are multiplied by

y i. Unlike in the unindexed theory, producing the propositions that relate the disaggregated

variables with the original is not so straightforward. The judgement x : ρmip V x′
i:σ # c

was defined to do this and is used to produce c∗j for each variable xj .

8.4.5 Program Compiler

Let p
prog
7−→ pmip be a program compiler. Its definition is

{

ρj
rtype
7−→ ρ′j

}m

j=1
x1 : ρ1, . . . , xm : ρm ` c

prop
7−→ c′

δx1:ρ1,...,xm:ρm
{e | c}

prog
7−→ δx1:ρ′

1
,...,xm:ρ′

m
{e | c′}

(8.42)

8.5 Results

Example 8.1 In Example 7.2 on page 124, we demonstrated the use of a disjunctive constraint.

We use our software to check that the program satisfies p DisjVarsBounded. It does. Thus,

the compiler can be applied to it. We do so and it produces the following mixed-integer program.

1 var w:<10.0, 90.0>

2 var x:[{1, ..., 10}] -> <5.0, 75.0>

3

4 min w subject_to

5

6 CONJ i:{1, ..., 10} w <= x[i] + 4.0,

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 147

8.5. RESULTS

7

8 exists y:[{1, ..., 10}] -> [0, 1]

9 exists x1:[{1, ..., 10}] -> [{1, ..., 10}] -> <5.0, 75.0>

10 exists w1:[{1, ..., 10}] -> <10.0, 90.0>

11 w = SUM i:{1, ..., 10} w1[i],

12 CONJ d:{1, ..., 10} x[d] = SUM i:{1, ..., 10} x1[i][d],

13 SUM i:{1, ..., 10} y[i] = 1,

14 CONJ i:{1, ..., 10}

15 10.0 * y[i] <= w1[i],

16 w1[i] <= 90.0 * y[i],

17 (CONJ d:{1, ..., 10}

18 5.0 * y[i] <= x1[i][d],

19 x1[i][d] <= 75.0 * y[i]),

20 w1[i] >= x1[i][i] + 4.0 * y[i]

CHAPTER 8. COMPILING INDEXED MATHEMATICAL PROGRAMS 148

Chapter 9

Application: Switched Flow

Process

We have provided several modeling frameworks and transformations between them. We now

apply these to a small switched flow process. Following the structure of the dissertation, we

first present an LCCA model of the system, then convert it into an MP model with Boolean

and disjunctive constraints, and then to a MIP model. This is done manually. Following

this, we show how the MP model can be expressed formally in the language we defined and

finally use our compiler to automatically produce the equivalent MIP model.

The following is a conceptual description of the system we wish to model.

Figure 9.1 depicts a tank being filled by two hybrid processes, α and β, and

being emptied continuously at a rate of F out = 1.8. Initially, the material level

in the tank is M0 = 20.0. The tank’s maximum capacity Mmax = 150.0 and the

material level should never fall below Mmin = 10.0.

Process α represents a pump that can be either on or off. When it is on, it

provides material to the tank at rate 2.0. There is also an operating cost of 10.0

per unit time for running the pump. Operational constraints on the pump forbid

it from being continuously run longer than 30.0 time units; it must be switched

off before this time limit is reached. There are no operating costs while it is off,

but it must not be switched on again in less than 2.0 time units. When it is

switched on again, if at all, a startup cost of 50.0 is incurred.

Process β is similar, but it represents a pump that is always on, either at a high

or low setting. In the high setting, material flows to the tank at rate 4.0 and the

operating cost is 15.0 per time unit. In the low setting, the material flow rate

drops to 0.5, and the operating cost is 2.0. Once set to low, the pump cannot be

switched to the high setting again for at least 3.0 time units, and, when it does,

a startup cost of 40.0 is incurred.

We wish to study how the material level changes over time and to understand

the cost of running the system for Tmax = 500.0 time units.

149

9.1. LCCA MODEL

on
off

α

hi
low

β

F out

Mmin

Mmax

m̄α m̄β

Figure 9.1: Schematic of switched flow process.

9.1 LCCA Model

A model in the LCCA framework, introduced in Chapter 2, can be formulated with relative

ease. First, the following variables are defined:

• M (i, t) is material level in tank, and m̄a (q) is rate at which process a puts material

into tank when in mode q.

• C (i, t) is total incurred cost, c̄a (q) is operating cost incurred for process a in mode q,

and ĉa (i) is instantaneous cost incurred for process a switching modes at event i.

• R and S stand for the amount of time processes α and β, respectively, have been in

their current discrete mode, r̂a (i) and ŝa (i) are the instantaneous changes to these

values at event i.

Then, the LCCA model is

n = 10 (9.1)

ten = Tmax (9.2a)

ts1 = 0.0 (9.2b)

Automaton α

on

m̄α = 2.0
c̄α = 10.0
R(i, t) ≤ 30.0

off

m̄α = 0.0
c̄α = 0.0
R(i, t) ≤ 1000.0

ĉα(i) = 0.0
r̂α(i) = −R(i, t)

R(i, t) ≥ 2.0ĉα(i) = 50.0
r̂α(i) = −R(i, t)

(9.3a)

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 150

9.1. LCCA MODEL

Automaton β

hi

m̄β = 4.0
c̄β = 15.0
S(i, t) ≤ 40.0

lo

m̄β = 0.5
c̄β = 2.0
S(i, t) ≤ 1000.0

ĉβ(i) = 0.0
ŝβ(i) = −S(i, t)

S(i, t) ≥ 3.0ĉβ(i) = 40.0
ŝβ(i) = −S(i, t)

(9.3b)

dR (i, t)

dt
= 1.0 ∀ (i, t) ∈ T (9.4a)

R (i + 1, t) = R (i, t) + r̂α (i) ∀i ∈ N\ {n} (9.4b)

R (1, ts1) = 0.0 (9.4c)

dS (i, t)

dt
= 1.0 ∀ (i, t) ∈ T (9.4d)

S (i + 1, t) = S (i, t) + ŝβ (i) ∀i ∈ N\ {n} (9.4e)

S (1, ts1) = 0.0 (9.4f)

dM (i, t)

dt
= m̄α (Qα (i)) + m̄β

(
Qβ (i)

)
− F out ∀ (i, t) ∈ T (9.4g)

M (i + 1, t) = M (i, t) ∀i ∈ N\ {n} (9.4h)

M (1, ts1) = M0 (9.4i)

Mmin ≤ M (i, t) ≤ Mmax ∀ (i, t) ∈ T (9.4j)

dC (i, t)

dt
= c̄α (Qα (i)) + c̄β

(
Qβ (i)

)
∀ (i, t) ∈ T (9.4k)

C (i + 1, t) = C (i, t) + ĉα (i) + ĉβ (i) ∀i ∈ N\ {n} (9.4l)

C (1, ts1) = 0.0 (9.4m)

All components (n,Gt,X, Aut,GV) of an LCCA model have been defined above. The

first equation sets n to 10. Equations (9.2) represent constraints on the timeline in the form

of Gt. The set of variables X = {R,S,M,C}. A component automata is provided for each

hybrid process, Aut = {α, β}, and both are declared graphically. The remaining equations

constitute constraint GV . Figure 9.2 shows two feasible trajectories for this system.

Equation (9.4g) states that its rate of change depends on m̄α and m̄β , and these values

themselves depend on the modes of the automata. Consider the trajectory shown in Figure

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 151

9.1. LCCA MODEL

0.0 10.0 50.0 60.0 65.4 75.0

1 2 3 4 5

time

20

40

60

80

100

120

140

0

m
a
te

ri
a
l
le

v
el

100

200

300

400

500

600

700

800

900

0

1000

co
st

Qα

Qβ

on off on off

hi lo hi

(a) Lower material levels, more switching. Complete data on page 211.

0.0 30.0 40.0 60.0 68.0 75.0

1 2 3 4 5

time

20

40

60

80

100

120

140

0

m
a
te

ri
a
l
le

v
el

100

200

300

400

500

600

700

800

900

0

1000

co
st

Qα

Qβ

on off

hi lo hi lo

(b) Higher material levels, less switching. Complete data on page 211.

Figure 9.2: Initial segments of two feasible trajectories for switched flow process.

9.2a during interval 3. Within this interval, Qα (i) = on and Qβ (i) = lo. In these modes,

the differential equation for M is

dM (i, t)

dt
= 2.0 + 0.5 − 1.8

= 0.7

At t = 60.0, automaton α transitions to its off mode, the equation becomes

dM (i, t)

dt
= 0.0 + 0.5 − 1.8

= −1.3

The right-hand-side switches between different constants.

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 152

9.2. MP MODEL

The differential equation for cost C is similar, but costs can also be incurred instanta-

neously by equation (9.4l). These represent the startup costs. Consider the transition from

interval 2 to 3 in Figure 9.2a. Automaton α transitions from off to on. The reset on this

transition includes the equation ĉα (i) = 50.0. Automata β remains in its lo mode. This

is modeled with the dummy transition, which includes the reset ĉβ (i) = 0.0 by definition.

Equation (9.4l) becomes

C (i + 1, t) = C (i, t) + 50.0 + 0.0

= C (i, t) + 50.0

which means the cost gets incremented by 50.0. The data is correctly plotted with two filled

in circles at t = 50.0. Since this is an event point, there are two time points, (2, 50.0) and

(3, 50.0), at this position.

R and S are called clock variables because they keep track of time, as indicated by setting

their rates to 1.0. Equation (9.4b) increments the value of clock R by r̂α (i) at every event.

On both transitions of α, the reset is r̂α (i) = −R (i, t), but this is simply the negation of

the clock value at the beginning of the event. In other words, the clock gets reset to 0.0.

Dummy transitions are not shown, but their definition is fixed such that r̂α (i) = 0.0 on

those transitions. Clocks are not reset when an automaton transitions from some mode back

to itself.

The guard on the transition from off to on is R (i, t) ≥ 2.0. Upon entry into the off

mode, clock R is set to 0.0 and evolves at rate 1.0 while in this mode. Thus, this guard

states that the automaton must remain in the off mode for at least 2.0 time units. Finally,

there are several invariants regarding the maximum time that each automaton can remain

in its discrete modes, and these are satisfied in the trajectory shown.

Finally, there are several invariants stated. In Figure 9.2b, automaton α is in the on

mode during interval 1. In this mode, the invariant R (i, t) ≤ 30.0 must hold. Since R was

initialized to the value 0.0, the automata had to transition in at most 30.0 time units.

9.2 MP Model

Now, using the transformation methods discussed in Chapter 3, we present a GDP model

that is equivalent to the LCCA model of the previous section. Several new variables are

required; the naming convention follows that in the description of the general procedure.

The model is

tsi ≤ tei ∀i ∈ N (9.5a)

tei = tsi+1 ∀i ∈ N\ {n} (9.5b)

∆ti = tei − tsi ∀i ∈ N (9.5c)

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 153

9.2. MP MODEL

ten = Tmax (9.6a)

ts1 = 0.0 (9.6b)






Y α (on, i)

Rs (i) ≤ 30.0

Re (i) ≤ 30.0




 ∨






Y α (off, i)

Rs (i) ≤ 1000.0

Re (i) ≤ 1000.0




 ∀i ∈ N (9.7a)






Zα (on, off, i)

ĉα (i) = 0.0

r̂α (i) = −Re (i)




 ∨









Zα (off, on, i)

Re (i) ≥ 2.0

ĉα (i) = 50.0

r̂α (i) = −Re (i)









∨






Y Y α (i)

ĉα (i) = 0.0

r̂α (i) = 0.0




 ∀i ∈ N\ {n} (9.7b)






Y β (hi, i)

Ss (i) ≤ 40.0

Se (i) ≤ 40.0




 ∨






Y β (lo, i)

Ss (i) ≤ 1000.0

Se (i) ≤ 1000.0




 ∀i ∈ N (9.7c)






Zβ (hi, lo, i)

ĉβ (i) = 0.0

ŝβ (i) = −Se (i)




 ∨









Zβ (lo, hi, i)

Se (i) ≥ 3.0

ĉβ (i) = 40.0

ŝβ (i) = −Se (i)









∨






Y Y β (i)

ĉβ (i) = 0.0

ŝβ (i) = 0.0




 ∀i ∈ N\ {n} (9.7d)

Re (i) = Rs (i) + ∆ti ∀i ∈ N (9.8a)

Rs (i + 1) = Re (i) + r̂α (i) ∀i ∈ N\ {n} (9.8b)

Rs (1) = 0.0 (9.8c)

Se (i) = Ss (i) + ∆ti ∀i ∈ N (9.8d)

Ss (i + 1) = Se (i) + ŝβ (i) ∀i ∈ N\ {n} (9.8e)

Ss (1) = 0.0 (9.8f)

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 154

9.2. MP MODEL

Me (i) = Ms (i) + w̄m,α (i) + w̄m,β (i) − F out∆ti ∀i ∈ N (9.8g)

Ms (i + 1) = Me (i) ∀i ∈ N\ {n} (9.8h)

Ms (1) = M0 (9.8i)

Mmin ≤ Ms (i) ≤ Mmax ∀i ∈ N (9.8j)

Mmin ≤ Me (i) ≤ Mmax ∀i ∈ N (9.8k)

Ce (i) = Cs (i) + w̄c,α (i) + w̄c,β (i) ∀i ∈ N (9.8l)

Cs (i + 1) = Ce (i) + ĉα (i) + ĉβ (i) ∀i ∈ N\ {n} (9.8m)

Cs (1) = 0.0 (9.8n)

∨

q∈Qa






Y a (q, i)

w̄m,a (i) = m̄a (q)∆ti

w̄c,a (i) = c̄a (q) ∆ti




 ∀i ∈ N,∀a ∈ Aut (9.8o)

∨

q∈Qa

Y a (q, i) ∀i ∈ N,∀a ∈ Aut (9.9)

Y Y Y (i) ⇒ Y Y Y (i + 1) ∀i ∈ N\ {n − 1, n} (9.10a)

Y Y Y (i) ⇒ (∆ti+1 = 0.0) ∀i ∈ N\ {n} (9.10b)

Y Y a (i) ⇔
∨

q∈Qa

Za (q, q, i) ∀i ∈ N\ {n} ,∀a ∈ Aut (9.11a)

Y Y Y (i) ⇔
∧

a∈Aut

Y Y a (i) ∀i ∈ N\ {n} (9.11b)

Za (q, q′, i) ⇔ (Y a (q, i) ∧ Y a (q′, i + 1)) ∀i ∈ N\ {n} ,∀a ∈ Aut,∀q, q′ ∈ Qa (9.11c)

The first set of constraints involve the timeline variables. Then, there are two disjunctions

for each of the two automata. Following these, there is a set of equations for each of the

continuous variables R, S, M , and C. Finally, there is a disjunction needed for the auxiliary

variable w̄, and the symmetry breaking constraints.

This GDP model is rather more complex than the corresponding LCCA model. It would

have been difficult to think of this model directly. It requires several variables, e.g. w̄m,α,

unrelated to the physical conception of the system. Various constraints, such as evolution

of mass, have to be defined in terms of these auxiliary variables, making the constraints

themselves less intuitive.

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 155

9.3. MIP MODEL

9.3 MIP Model

Appendix A reviews methods for converting a GDP to an MIP. We use the convex hull

method, which requires introduction of many new variables. The notational convention

used employs superscripts of the form 1, 2, or 11, 21. For example, if there is a disjunction

with two disjuncts, two disaggregated variables will be needed for each variable. For the

variable X, we introduce X1 and X2 as its disaggregated variables. If the same variable X

is also used in another disjunction, a separate set of disaggregated variables will be needed

for it. In that case, double superscripts are used, e.g. X21 is the disaggregated variable for

the 2nd disjunct of the 1st disjunction. By convention, Boolean variables are capitalized and

their corresponding binary {0, 1} variables are in lower case.

The full linear MIP model for the example is

tsi ≤ tei ∀i ∈ N (9.12a)

tei = tsi+1 ∀i ∈ N\ {n} (9.12b)

∆ti = tei − tsi ∀i ∈ N (9.12c)

ten = Tmax (9.13a)

ts1 = 0.0 (9.13b)

[

0.0 ≤ Rs,1 (i) ≤ 30.0yα (on, i)

0.0 ≤ Re,11 (i) ≤ 30.0yα (on, i)

]

∀i ∈ N (9.14a)

[

0.0 ≤ Rs,2 (i) ≤ 1000.0yα (off, i)

0.0 ≤ Re,21 (i) ≤ 1000.0yα (off, i)

]

∀i ∈ N (9.14b)

Rs (i) = Rs,1 (i) + Rs,2 (i) ∀i ∈ N (9.14c)

Re (i) = Re,11 (i) + Re,21 (i) ∀i ∈ N (9.14d)

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 156

9.3. MIP MODEL






ĉα,1 (i) = 0.0

r̂α,1 (i) = −Re,12 (i)

0.0 ≤ Re,12 (i) ≤ 30.0zα (on, off, i)




 ∀i ∈ N\ {n} (9.14e)






2.0zα (off, on, i) ≤ Re,22 (i) ≤ 1000.0zα (off, on, i)

ĉα,2 (i) = 50.0zα (off, on, i)

r̂α,2 (i) = −Re,22 (i)




 ∀i ∈ N\ {n} (9.14f)






ĉα,3 (i) = 0.0

r̂α,3 (i) = 0.0

0.0 ≤ Re,32 (i) ≤ 1000.0yyα (i)




 ∀i ∈ N\ {n} (9.14g)

ĉα (i) = ĉα,1 (i) + ĉα,2 (i) + ĉα,3 (i) ∀i ∈ N\ {n} (9.14h)

r̂α (i) = r̂α,1 (i) + r̂α,2 (i) + r̂α,3 (i) ∀i ∈ N\ {n} (9.14i)

Re (i) = Re,12 (i) + Re,22 (i) + Re,32 (i) ∀i ∈ N\ {n} (9.14j)

[

0.0 ≤ Ss,1 (i) ≤ 40.0yβ (hi, i)

0.0 ≤ Se,11 (i) ≤ 40.0yβ (hi, i)

]

∀i ∈ N (9.14k)

[

0.0 ≤ Ss,2 (i) ≤ 1000.0yβ (lo, i)

0.0 ≤ Se,21 (i) ≤ 1000.0yβ (lo, i)

]

∀i ∈ N (9.14l)

Ss (i) = Ss,1 (i) + Ss,2 (i) ∀i ∈ N (9.14m)

Se (i) = Se,11 (i) + Se,21 (i) ∀i ∈ N (9.14n)






ĉβ,1 (i) = 0.0

ŝβ,1 (i) = −Se,12 (i)

0.0 ≤ Se,12 (i) ≤ 40.0zβ (hi, lo, i)




 ∀i ∈ N\ {n} (9.14o)






3.0zβ (lo, hi, i) ≤ Se,22 (i) ≤ 1000.0zβ (lo, hi, i)

ĉβ,2 (i) = 40.0zβ (lo, hi, i)

ŝβ,2 (i) = −Se,22 (i)




 ∀i ∈ N\ {n} (9.14p)






ĉβ,3 (i) = 0.0

ŝβ,3 (i) = 0.0

0.0 ≤ Se,32 (i) ≤ 1000.0yyβ (i)




 ∀i ∈ N\ {n} (9.14q)

ĉβ (i) = ĉβ,1 (i) + ĉβ,2 (i) + ĉβ,3 (i) ∀i ∈ N\ {n} (9.14r)

ŝβ (i) = ŝβ,1 (i) + ŝβ,2 (i) + ŝβ,3 (i) ∀i ∈ N\ {n} (9.14s)

Se (i) = Se,12 (i) + Se,22 (i) + Se,32 (i) ∀i ∈ N\ {n} (9.14t)

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 157

9.3. MIP MODEL

Re (i) = Rs (i) + ∆ti ∀i ∈ N (9.15a)

Rs (i + 1) = Re (i) + r̂α (i) ∀i ∈ N\ {n} (9.15b)

Rs (1) = 0.0 (9.15c)

Se (i) = Ss (i) + ∆ti ∀i ∈ N (9.15d)

Ss (i + 1) = Se (i) + ŝβ (i) ∀i ∈ N\ {n} (9.15e)

Ss (1) = 0.0 (9.15f)

Me (i) = Ms (i) + w̄m,α (i) + w̄m,β (i) − F out∆ti ∀i ∈ N (9.15g)

Ms (i + 1) = Me (i) ∀i ∈ N\ {n} (9.15h)

Ms (1) = M0 (9.15i)

Mmin ≤ Ms (i) ≤ Mmax ∀i ∈ N (9.15j)

Mmin ≤ Me (i) ≤ Mmax ∀i ∈ N (9.15k)

Ce (i) = Cs (i) + w̄c,α (i) + w̄c,β (i) ∀i ∈ N (9.15l)

Cs (i + 1) = Ce (i) + ĉα (i) + ĉβ (i) ∀i ∈ N\ {n} (9.15m)

Cs (1) = 0.0 (9.15n)






wm,a,q (i) = m̄a (q) ∆t1,q,a
i

wc,a,q (i) = c̄a (q) ∆t1,q,a
i

0.0 ≤ ∆t1,q,a
i ≤ Tmaxya (q, i)




 ∀i ∈ N,∀a ∈ Aut,∀q ∈ Qa (9.15o)

w̄m,a (i) =
∑

q∈Qa

wm,a,q (i) ∀i ∈ N,∀a ∈ Aut (9.15p)

w̄c,a (i) =
∑

q∈Qa

wc,a,q (i) ∀i ∈ N,∀a ∈ Aut (9.15q)

∆ti =
∑

q∈Qa

∆t1,q,a
i ∀i ∈ N,∀a ∈ Aut (9.15r)

∑

q∈Qa

ya (q, i) = 1 ∀i ∈ N,∀a ∈ Aut (9.16)

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 158

9.3. MIP MODEL

1 − yyy(i) + yyy (i + 1) ≥ 1 ∀i ∈ N\ {n − 1, n} (9.17a)

0.0 ≤ ∆ti+1 ≤ Tmax (1 − yyy (i)) ∀i ∈ N\ {n} (9.17b)

1 − yya (i) +
∑

q∈Qa

za (q, q, i) ≥ 1

1 − za (q, q, i) + yya (i) ≥ 1 ∀q ∈ Qa






∀i ∈ N\ {n} ,∀a ∈ Aut (9.18a)

yya (i) + (1 − yyy (i)) ≥ 1 ∀a ∈ Aut
(
∑

a∈Aut

(1 − yya (i))

)

+ yyy (i) ≥ 1







∀i ∈ N\ {n} (9.18b)

1 − za (q, q′, i) + ya (q, i) ≥ 1

1 − za (q, q′, i) + ya (q′, i + 1) ≥ 1

1 − ya (q, i) + 1 − ya (q′, i + 1) + za (q, q′, i) ≥ 1







∀i ∈ N\ {n} ,∀a ∈ Aut,∀q, q′ ∈ Qa

(9.18c)

We have now expressed the optimization problem of interest as a linear MIP and thus

can apply any of several well-developed algorithms to solve it. For completeness, we present

solutions under two different objectives. The above MIP is finally expressed in the GAMS

language, distribution 22.0, and solved with the CPLEX algorithm, version 9.1. This re-

quires further modifications to the model, but these are minor syntactic variations and

should not be considered model transformations.

Figure 9.3a depicts the optimal trajectory when the objective is to minimize cost, Ω =

C (ten). This is easily put into the MIP form Ce (n). With this objective, there is essentially

no benefit to running the system. However, we are requiring it to run to the time point

(i, t) = (10, 500.0). Ideally, processes α and β could remain in their off and lo modes,

where the operating costs are lower. Process α does so, but β has to switch into its hi

mode because otherwise the material level would fall below 10.0, which is not allowed. The

optimal solution obtained is C (ten) = 3537.1.

Now consider the minimize makespan objective Ω = ten. The idea behind this problem is

to complete a job as quickly as possible. This objective is only meaningful if we modify the

model a bit. Let us set F out = 0.0, Mmin = 0.0, Mmax = 1000.0, M0 = 0.0, and Tmax =

500.0. The job is to fill the tank, represented by adding the constraint M (ten) = Mmax. This

is transformed into the MIP constraint Me (n) = Mmax. We must still provide an upper

bound to the time horizon, but instead of requiring ten = Tmax, we require only ten ≤ Tmax.

This presumes that the job can be fulfilled in at most Tmax time units. It can; the optimal

solution obtained is ten = 210.0. The optimal trajectory, depicted in Figure 9.3b, shows that

processes α and β run in their on and hi modes as much as possible.

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 159

9.4. FORMAL MP MODEL

0.0
40.0 46.4

69.2 176.9 216.9
244.6

284.6 392.3 432.3 500.0

1 2 3 4 5 6 7 8 9 10

time

20

40

60

80

100

120

140

0

m
a
te

ri
a
l
le

v
el

400

800

1200

1600

2000

2400

2800

3200

0

3600

co
st

Qα

Qβ

off

hi
lo

hi lo hi lo hi lo hi lo

(a) Minimize cost. Complete data on page 212.

0.0 30.0
34.0

64.0
67.0

97.0
100.0

130.0
140.0

170.0 210.0

1 2 3 4 5 6 7 8 9 10

time

100

200

300

400

500

600

700

800

900

0

1000

m
a
te

ri
a
l
le

v
el

750

1500

2250

3000

3750

4500

5250

0

co
st

Qα

Qβ

on
off

on
off

on
off

on off on off

hi
lo

hi
lo

hi
lo

hi lo hi

(b) Minimize makespan. Complete data on page 213.

Figure 9.3: Optimal trajectories under two objectives for switched flow process.

9.4 Formal MP Model

The MP model presented in Section 9.2 is informal. It cannot be understood by a computer.

The purpose of Chapters 4, 6, and 7 was to present a formal theory of MP that included

modeling constructs required in practice. The following is a formal MP model, i.e. a model

expressed in the language we introduced in this work, of the switched flow process.

1 let

2 expri n = 5

3 set N = {1,...,n}

4 set N1 = {1,...,n-1}

5 set N2 = {1,...,n-2}

6

7 set CLOCK = {’R’, ’S’}

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 160

9.4. FORMAL MP MODEL

8 set P = {’s’,’e’}

9 set AUT = {’alpha’, ’beta’}

10

11 typei funi MODES (a) : [AUT] -> set =

12 case a of

13 ’alpha’ => {’on’, ’off’}

14 | ’beta’ => {’lo’, ’hi’}

15

16 expr matlFlowa : [MODES[’alpha’]] -> real =

17 fni q .

18 case _{i.real} q of ’on’ => 2.0 | ’off’ => 0.0

19

20 expr matlFlowb : [MODES[’beta’]] -> real =

21 fni q .

22 case _{i.real} q of ’hi’ => 4.0 | ’lo’ => 0.5

23

24 expr costFlowa : [MODES[’alpha’]] -> real =

25 fni q .

26 case _{i.real} q of ’on’ => 10.0 | ’off’ => 0.0

27

28 expr costFlowb : [MODES[’beta’]] -> real =

29 fni q .

30 case _{i.real} q of ’hi’ => 15.0 | ’lo’ => 2.0

31

32 expr Fout = 1.8

33 expr Minit = 20.0

34 expr Mmax = 150.0

35 expr Mmin = 10.0

36 expr Tmax = 500.0

37

38 in

39

40 var t : [P * N] -> real

41 var Matl : [P * N] -> real

42 var Cost : [P * N] -> real

43 var isInMode : [a:AUT * MODES[a] * N] -> bool (* Y *)

44 var clock : [CLOCK] -> [P * N] -> <0.0, 1000.0>

45

46 min Cost[’e’,n] subject_to

47

48

49 exists costJmp : [AUT * N] -> <0.0, 50.0>

50 exists clockJmp : [CLOCK] -> [N] -> <~1000.0, 0.0>

51 exists delt : [N] -> <0.0, 500.0>

52

53 exists goesFromTo : [a:AUT * MODES[a] * MODES[a] * N1] -> bool (* Z *)

54 exists isDummyTrans : [AUT * N1] -> bool (* YY *)

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 161

9.4. FORMAL MP MODEL

55 exists isDummyEvent : [N1] -> bool (* YYY *)

56

57 exists wmbar : [AUT * N] -> <0.0, 2000.0>

58 exists wcbar : [AUT * N] -> <0.0, 7500.0>

59

60

61 (* timeline constraints *)

62 (CONJ i:N . t[’s’, i] <= t[’e’, i]),

63 (CONJ i:N1 . t[’e’, i] = t[’s’, i+1]),

64 (CONJ i:N . delt[i] = t[’e’, i] - t[’s’, i]),

65 t[’e’, n] = Tmax,

66 t[’s’, 1] = 0.0,

67

68 (* disjunction over modes of alpha *)

69 let

70 expr funi Rmax (q) : [MODES[’alpha’]] -> real =

71 case _{i.real} q of ’on’ => 30.0 | ’off’ => 1000.0

72 in

73 CONJ i:N . DISJ q:MODES[’alpha’] .

74 isTrue isInMode[’alpha’, q, i],

75 CONJ p:P . clock[’R’][p,i] <= Rmax[q]

76 end,

77

78 (* disjunction over transitions of alpha *)

79 (CONJ i:N1 .

80 let

81 prop p_OnOff =

82 isTrue goesFromTo[’alpha’, ’on’, ’off’, i],

83 costJmp[’alpha’, i] = 0.0,

84 clockJmp[’R’][i] = ~clock[’R’][’e’, i]

85

86 prop p_OffOn =

87 isTrue goesFromTo[’alpha’, ’off’, ’on’, i],

88 clock[’R’][’e’, i] >= 2.0,

89 costJmp[’alpha’, i] = 50.0,

90 clockJmp[’R’][i] = ~clock[’R’][’e’, i]

91

92 prop p_Dummy =

93 isTrue isDummyTrans[’alpha’, i],

94 costJmp[’alpha’, i] = 0.0,

95 clockJmp[’R’][i] = 0.0

96 in

97 p_OnOff disj p_OffOn disj p_Dummy

98 end

99),

100

101

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 162

9.4. FORMAL MP MODEL

102 (* disjunction over modes of beta *)

103 let

104 expr funi Smax (q) : [MODES[’beta’]] -> real =

105 case _{i.real} q of ’hi’ => 40.0 | ’lo’ => 1000.0

106 in

107 CONJ i:N . DISJ q:MODES[’beta’] .

108 isTrue isInMode[’beta’, q, i],

109 CONJ p:P . clock[’S’][p,i] <= Smax[q]

110 end,

111

112 (* disjunction over transitions of beta *)

113 (CONJ i:N1 .

114 let

115 prop p_HiLo =

116 isTrue goesFromTo[’beta’, ’hi’, ’lo’, i],

117 costJmp[’beta’, i] = 0.0,

118 clockJmp[’S’][i] = ~clock[’S’][’e’, i]

119

120 prop p_LoHi =

121 isTrue goesFromTo[’beta’, ’lo’, ’hi’, i],

122 clock[’S’][’e’, i] >= 3.0,

123 costJmp[’beta’, i] = 40.0,

124 clockJmp[’S’][i] = ~clock[’S’][’e’, i]

125

126 prop p_Dummy =

127 isTrue isDummyTrans[’beta’, i],

128 costJmp[’beta’, i] = 0.0,

129 clockJmp[’S’][i] = 0.0

130 in

131 p_HiLo disj p_LoHi disj p_Dummy

132 end

133),

134

135

136 (* clock dynamics *)

137 (CONJ c:CLOCK .

138 (CONJ i:N . clock[c][’e’, i] = clock[c][’s’, i] + delt[i]),

139 (CONJ i:N1 . clock[c][’s’, i+1] = clock[c][’e’, i] + clockJmp[c][i]),

140 clock[c][’s’,1] = 0.0

141),

142

143 (* material level dynamics *)

144 (CONJ i:N . Matl[’e’,i] =

145 Matl[’s’,i] + (SUM a:AUT . wmbar[a,i]) + Fout * delt[i]),

146 (CONJ i:N1 . Matl[’s’, i+1] = Matl[’e’, i]),

147 Matl[’s’, 1] = Minit,

148 (CONJ i:N . CONJ p:P . Mmin <= Matl[p,i], Matl[p,i] <= Mmax),

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 163

9.4. FORMAL MP MODEL

149

150 (* cost dynamics *)

151 (CONJ i:N . Cost[’e’,i] = Cost[’s’,i] + (SUM a:AUT . wcbar[a,i])),

152 (CONJ i:N1 . Cost[’s’,i+1] = Cost[’e’,i] + (SUM a:AUT . costJmp[a,i])),

153 Cost[’s’,1] = 0.0,

154

155 (* definition of wmbar and wcbar *)

156 (CONJ i:N .

157 DISJ q:MODES[’alpha’] . (isTrue isInMode[’alpha’,q,i],

158 wmbar[’alpha’,i] = matlFlowa[q] * delt[i],

159 wcbar[’alpha’,i] = costFlowa[q] * delt[i])

160),

161 (CONJ i:N .

162 DISJ q:MODES[’beta’] . (isTrue isInMode[’beta’,q,i],

163 wmbar[’beta’,i] = matlFlowb[q] * delt[i],

164 wcbar[’beta’,i] = costFlowb[q] * delt[i])

165),

166

167 (* make sure each automaton is only in one mode in each interval *)

168 (CONJ i:N .

169 let expr on = isInMode[’alpha’, ’on’, i]

170 expr off = isInMode[’alpha’, ’off’, i]

171 in isTrue (on or off) and not (on and off)

172 end,

173

174 let expr hi = isInMode[’beta’, ’hi’, i]

175 expr lo = isInMode[’beta’, ’lo’, i]

176 in isTrue (hi or lo) and not (hi and lo)

177 end

178),

179

180 (* symmetry breaking *)

181 (CONJ i:N2 . isTrue isDummyEvent[i] ==> isDummyEvent[i+1]),

182 (CONJ i:N1 . (isTrue not isDummyEvent[i]) disj (delt[i+1] = 0.0)),

183

184 (* definition of isDummyTrans *)

185 (CONJ i:N1 . isTrue isDummyTrans[’alpha’, i] <==>

186 (goesFromTo[’alpha’,’on’,’on’,i] or goesFromTo[’alpha’,’off’,’off’,i])),

187 (CONJ i:N1 . isTrue isDummyTrans[’beta’, i] <==>

188 (goesFromTo[’beta’,’hi’,’hi’,i] or goesFromTo[’beta’,’lo’,’lo’,i])),

189

190 (* definition of isDummyEvent *)

191 (CONJ i:N1 . isTrue isDummyEvent[i] <==>

192 (isDummyTrans[’alpha’,i] and isDummyTrans[’beta’,i])),

193

194 (* definition of goesFromTo *)

195 (CONJ i:N1 . CONJ a:AUT . CONJ q1:MODES[a] . CONJ q2:MODES[a] .

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 164

9.5. FORMAL MIP MODEL

196 isTrue goesFromTo[a,q1,q2,i] <==> (isInMode[a,q1,i] and isInMode[a,q2,i+1]))

197

198 end

9.5 Formal MIP Model

The MIP model of Section 9.3 was derived manually from the general MP model of Section

9.2. Now that we have a formal MP model of the switched flow process, we can apply the

compiler defined in Chapter 8 to automatically produce the following MIP.

1 let

2 expri n = 5

3 set N = {1, ..., n}

4 set N1 = {1, ..., n-1}

5 set N2 = {1, ..., n-2}

6

7 set CLOCK = {’R’,’S’}

8 set P = {’s’,’e’}

9 set AUT = {’alpha’,’beta’}

10

11 typei funi MODES (a) : [AUT] -> set =

12 case a of

13 ’alpha’ => {’on’,’off’}

14 | ’beta’ => {’lo’,’hi’}

15

16 expr matlFlowa : [MODES[’alpha’]] -> real =

17 fni q .

18 case _{i.real} q of ’on’ => 2.0 | ’off’ => 0.0

19

20 expr matlFlowb : [MODES[’beta’]] -> real =

21 fni q .

22 case _{i.real} q of ’hi’ => 4.0 | ’lo’ => 0.5

23

24 expr costFlowa : [MODES[’alpha’]] -> real =

25 fni q .

26 case _{i.real} q of ’on’ => 10.0 | ’off’ => 0.0

27

28 expr costFlowb : [MODES[’beta’]] -> real =

29 fni q .

30 case _{i.real} q of ’hi’ => 15.0 | ’lo’ => 2.0

31 in

32

33 var t:[P * N] -> real

34 var Matl:[P * N] -> real

35 var Cost:[P * N] -> real

36 var isInMode:[a:AUT * MODES[a] * N] -> [0, 1]

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 165

9.5. FORMAL MIP MODEL

37 var clock:[CLOCK] -> [P * N] -> <0.0, 1000.0>

38

39 min Cost[’e’,5] subject_to

40

41 exists costJmp:[AUT * N] -> <0.0, 50.0>

42 exists clockJmp:[CLOCK] -> [N] -> <~1000.0, 0.0>

43 exists delt:[N] -> <0.0, 500.0>

44

45 exists goesFromTo:[a:AUT * MODES[a] * MODES[a] * N1] -> [0, 1]

46 exists isDummyTrans:[AUT * N1] -> [0, 1]

47 exists isDummyEvent:[N1] -> [0, 1]

48

49 exists wmbar:[AUT * N] -> <0.0, 2000.0>

50 exists wcbar:[AUT * N] -> <0.0, 7500.0>

51

52

53 (* timeline constraints *)

54 (CONJ i:N t[’s’,i] <= t[’e’,i]),

55 (CONJ i:N1 t[’e’,i] = t[’s’,(i + 1)]),

56 (CONJ i:N delt[i] = t[’e’,i] - t[’s’,i]),

57 t[’e’,5] = 500.0,

58 t[’s’,1] = 0.0,

59

60

61 (* transformation of disjunction over modes of alpha *)

62 (CONJ i:N

63 exists y:[MODES[’alpha’]] -> [0, 1]

64 exists isInMode1:[MODES[’alpha’]] -> [a:AUT * MODES[a] * N] -> [0, 1]

65 exists clock1:[MODES[’alpha’]] -> [CLOCK] -> [P * N] -> <0.0, 1000.0>

66

67 (CONJ d:CLOCK CONJ d0:(P * N)

68 clock[d][d0] = SUM q:MODES[’alpha’] clock1[q][d][d0]),

69 (CONJ d:(a:AUT * MODES[a] * N)

70 isInMode[d] = SUM q:MODES[’alpha’] isInMode1[q][d]),

71 SUM q:MODES[’alpha’] y[q] = 1,

72 (CONJ q:MODES[’alpha’]

73 (CONJ d:(a:AUT * MODES[a] * N)

74 0 * y[q] <= isInMode1[q][d],

75 isInMode1[q][d] <= 1 * y[q]),

76 (CONJ d:CLOCK CONJ d0:(P * N)

77 0.0 * y[q] <= clock1[q][d][d0],

78 clock1[q][d][d0] <= 1000.0 * y[q]),

79 isInMode1[q][’alpha’,q,i] >= 1 * y[q],

80 CONJ p:P clock1[q][’R’][p,i] <=

81 (case _{i.real} q of ’off’ => (1000.0 * y[q]) | ’on’ => (30.0 * y[q])))

82),

83

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 166

9.5. FORMAL MIP MODEL

84

85 (* transformation of disjunction over transitions of alpha *)

86 (CONJ i:N1

87 exists y:[{1, ..., 3}] -> [0, 1]

88 exists isDummyTrans1:[{1, ..., 3}] -> [AUT * N1] -> [0, 1]

89 exists goesFromTo1:[{1, ..., 3}] ->

90 [a:AUT * MODES[a] * MODES[a] * N1] -> [0, 1]

91 exists costJmp1:[{1, ..., 3}] -> [AUT * N] -> <0.0, 50.0>

92 exists clockJmp1:[{1, ..., 3}] -> [{’R’,’S’}] -> [N] -> <~1000.0, 0.0>

93 exists clock1:[{1, ..., 3}] -> [{’R’,’S’}] -> [P * N] -> <0.0, 1000.0>

94

95 (CONJ d:CLOCK CONJ d0:(P * N)

96 clock[d][d0] = SUM i0:{1, ..., 3} clock1[i0][d][d0]),

97 (CONJ d:CLOCK CONJ d0:N

98 clockJmp[d][d0] = SUM i0:{1, ..., 3} clockJmp1[i0][d][d0]),

99 (CONJ d:(AUT * N)

100 costJmp[d] = SUM i0:{1, ..., 3} costJmp1[i0][d]),

101 (CONJ d:(a:AUT * MODES[a] * MODES[a] * N1)

102 goesFromTo[d] = SUM i0:{1, ..., 3} goesFromTo1[i0][d]),

103 (CONJ d:(AUT * N1)

104 isDummyTrans[d] = SUM i0:{1, ..., 3} isDummyTrans1[i0][d]),

105 SUM i0:{1, ..., 3} y[i0] = 1,

106 (CONJ i0:{1, ..., 3}

107 (CONJ d:CLOCK CONJ d0:(P * N)

108 0.0 * y[i0] <= clock1[i0][d][d0],

109 clock1[i0][d][d0] <= 1000.0 * y[i0]),

110 (CONJ d:(AUT * N)

111 0.0 * y[i0] <= costJmp1[i0][d],

112 costJmp1[i0][d] <= 50.0 * y[i0]),

113 (CONJ d:CLOCK CONJ d0:N

114 ~1000.0 * y[i0] <= clockJmp1[i0][d][d0],

115 clockJmp1[i0][d][d0] <= 0.0 * y[i0]),

116 (CONJ d:(a:AUT * MODES[a] * MODES[a] * N1)

117 0 * y[i0] <= goesFromTo1[i0][d],

118 goesFromTo1[i0][d] <= 1 * y[i0]),

119 (CONJ d:(AUT * N1)

120 0 * y[i0] <= isDummyTrans1[i0][d],

121 isDummyTrans1[i0][d] <= 1 * y[i0]),

122 (case _{i.prop} i0 of

123 1 => goesFromTo1[i0][’alpha’,’on’,’off’,i] >= 1 * y[i0],

124 costJmp1[i0][’alpha’,i] = 0.0 * y[i0],

125 clockJmp1[i0][’R’][i] = ~ clock1[i0][’R’][’e’,i]

126 | 2 => goesFromTo1[i0][’alpha’,’off’,’on’,i] >= 1 * y[i0],

127 clock1[i0][’R’][’e’,i] >= 2.0 * y[i0],

128 costJmp1[i0][’alpha’,i] = 50.0 * y[i0],

129 clockJmp1[i0][’R’][i] = ~ clock1[i0][’R’][’e’,i]

130 | 3 => isDummyTrans1[i0][’alpha’,i] >= 1 * y[i0],

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 167

9.5. FORMAL MIP MODEL

131 costJmp1[i0][’alpha’,i] = 0.0 * y[i0],

132 clockJmp1[i0][’R’][i] = 0.0 * y[i0]

133)

134)

135),

136

137

138 (* transformation of disjunction over modes of beta *)

139 (CONJ i:N

140 exists y:[MODES[’beta’]] -> [0, 1]

141 exists isInMode1:[MODES[’beta’]] -> [a:AUT * MODES[a] * N] -> [0, 1]

142 exists clock1:[MODES[’beta’]] -> [CLOCK] -> [P * N] -> <0.0, 1000.0>

143

144 (CONJ d:CLOCK CONJ d0:(P * N)

145 clock[d][d0] = SUM q:MODES[’beta’] clock1[q][d][d0]),

146 (CONJ d:(a:AUT * MODES[a] * N)

147 isInMode[d] = SUM q:MODES[’beta’] isInMode1[q][d]),

148 SUM q:MODES[’beta’] y[q] = 1,

149 (CONJ q:MODES[’beta’]

150 (CONJ d:(a:AUT * MODES[a] * N)

151 0 * y[q] <= isInMode1[q][d],

152 isInMode1[q][d] <= 1 * y[q]),

153 (CONJ d:CLOCK CONJ d0:(P * N)

154 0.0 * y[q] <= clock1[q][d][d0],

155 clock1[q][d][d0] <= 1000.0 * y[q]),

156 isInMode1[q][’beta’,q,i] >= 1 * y[q],

157 CONJ p:P clock1[q][’S’][p,i] <=

158 (case _{i.real} q of ’hi’ => (40.0 * y[q]) | ’lo’ => (1000.0 * y[q])))

159),

160

161

162 (* transformation of disjunction over transitions of beta *)

163 (CONJ i:N1

164 exists y:[{1, ..., 3}] -> [0, 1]

165 exists isDummyTrans1:[{1, ..., 3}] -> [AUT * N1] -> [0, 1]

166 exists goesFromTo1:[{1, ..., 3}] ->

167 [a:AUT * MODES[a] * MODES[a] * N1] -> [0, 1]

168 exists costJmp1:[{1, ..., 3}] -> [AUT * N] -> <0.0, 50.0>

169 exists clockJmp1:[{1, ..., 3}] -> [CLOCK] -> [N] -> <~1000.0, 0.0>

170 exists clock1:[{1, ..., 3}] -> [CLOCK] -> [P * N] -> <0.0, 1000.0>

171

172 (CONJ d:CLOCK CONJ d0:(P * N)

173 clock[d][d0] = SUM i0:{1, ..., 3} clock1[i0][d][d0]),

174 (CONJ d:CLOCK CONJ d0:N

175 clockJmp[d][d0] = SUM i0:{1, ..., 3} clockJmp1[i0][d][d0]),

176 (CONJ d:(AUT * N)

177 costJmp[d] = SUM i0:{1, ..., 3} costJmp1[i0][d]),

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 168

9.5. FORMAL MIP MODEL

178 (CONJ d:(a:AUT * MODES[a] * MODES[a] * N1)

179 goesFromTo[d] = SUM i0:{1, ..., 3} goesFromTo1[i0][d]),

180 (CONJ d:(AUT * N1)

181 isDummyTrans[d] = SUM i0:{1, ..., 3} isDummyTrans1[i0][d]),

182 SUM i0:{1, ..., 3} y[i0] = 1,

183 (CONJ i0:{1, ..., 3}

184 (CONJ d:CLOCK CONJ d0:(P * N)

185 0.0 * y[i0] <= clock1[i0][d][d0],

186 clock1[i0][d][d0] <= 1000.0 * y[i0]),

187 (CONJ d:(AUT * N)

188 0.0 * y[i0] <= costJmp1[i0][d],

189 costJmp1[i0][d] <= 50.0 * y[i0]),

190 (CONJ d:CLOCK CONJ d0:N

191 ~1000.0 * y[i0] <= clockJmp1[i0][d][d0],

192 clockJmp1[i0][d][d0] <= 0.0 * y[i0]),

193 (CONJ d:(a:AUT * MODES[a] * MODES[a] * N1)

194 0 * y[i0] <= goesFromTo1[i0][d],

195 goesFromTo1[i0][d] <= 1 * y[i0]),

196 (CONJ d:(AUT * N1)

197 0 * y[i0] <= isDummyTrans1[i0][d],

198 isDummyTrans1[i0][d] <= 1 * y[i0]),

199 (case _{i.prop} i0 of

200 1 => goesFromTo1[i0][’beta’,’hi’,’lo’,i] >= 1 * y[i0],

201 costJmp1[i0][’beta’,i] = 0.0 * y[i0],

202 clockJmp1[i0][’S’][i] = ~ clock1[i0][’S’][’e’,i]

203 | 2 => goesFromTo1[i0][’beta’,’lo’,’hi’,i] >= 1 * y[i0],

204 clock1[i0][’S’][’e’,i] >= 3.0 * y[i0],

205 costJmp1[i0][’beta’,i] = 40.0 * y[i0],

206 clockJmp1[i0][’S’][i] = ~ clock1[i0][’S’][’e’,i]

207 | 3 => isDummyTrans1[i0][’beta’,i] >= 1 * y[i0],

208 costJmp1[i0][’beta’,i] = 0.0 * y[i0],

209 clockJmp1[i0][’S’][i] = 0.0 * y[i0]

210)

211)

212),

213

214

215 (* clock dynamics *)

216 (CONJ c:CLOCK

217 (CONJ i:N clock[c][’e’,i] = clock[c][’s’,i] + delt[i]),

218 (CONJ i:N1 clock[c][’s’,(i + 1)] = clock[c][’e’,i] + clockJmp[c][i]),

219 clock[c][’s’,1] = 0.0

220),

221

222 (* material level dynamics *)

223 (CONJ i:N Matl[’e’,i] = Matl[’s’,i] + SUM a:AUT wmbar[a,i] + (1.8 * delt[i])),

224 (CONJ i:N1 Matl[’s’,(i + 1)] = Matl[’e’,i]),

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 169

9.5. FORMAL MIP MODEL

225 Matl[’s’,1] = 20.0,

226 (CONJ i:N CONJ p:P

227 10.0 <= Matl[p,i],

228 Matl[p,i] <= 150.0),

229

230 (* cost dynamics *)

231 (CONJ i:N Cost[’e’,i] = Cost[’s’,i] + SUM a:AUT wcbar[a,i]),

232 (CONJ i:N1 Cost[’s’,(i + 1)] = Cost[’e’,i] + SUM a:AUT costJmp[a,i]),

233 Cost[’s’,1] = 0.0,

234

235 (* definition of wmbar and wcbar *)

236 (CONJ i:N

237 exists y:[MODES[’alpha’]] -> [0, 1]

238 exists wmbar1:[MODES[’alpha’]] -> [(AUT * N)] -> <0.0, 2000.0>

239 exists wcbar1:[MODES[’alpha’]] -> [(AUT * N)] -> <0.0, 7500.0>

240 exists isInMode1:[MODES[’alpha’]] -> [(a:AUT * MODES[a] * N)] -> [0, 1]

241 exists delt1:[MODES[’alpha’]] -> [N] -> <0.0, 500.0>

242

243 (CONJ d:N

244 delt[d] = SUM q:MODES[’alpha’] delt1[q][d]),

245 (CONJ d:(a:AUT * MODES[a] * N)

246 isInMode[d] = SUM q:MODES[’alpha’] isInMode1[q][d]),

247 (CONJ d:(AUT * N)

248 wcbar[d] = SUM q:MODES[’alpha’] wcbar1[q][d]),

249 (CONJ d:(AUT * N)

250 wmbar[d] = SUM q:MODES[’alpha’] wmbar1[q][d]),

251 SUM q:MODES[’alpha’] y[q] = 1,

252 (CONJ q:MODES[’alpha’]

253 (CONJ d:(a:AUT * MODES[a] * N)

254 0 * y[q] <= isInMode1[q][d],

255 isInMode1[q][d] <= 1 * y[q]),

256 (CONJ d:N

257 0.0 * y[q] <= delt1[q][d],

258 delt1[q][d] <= 500.0 * y[q]),

259 (CONJ d:(AUT * N)

260 0.0 * y[q] <= wmbar1[q][d],

261 wmbar1[q][d] <= 2000.0 * y[q]),

262 (CONJ d:(AUT * N)

263 0.0 * y[q] <= wcbar1[q][d],

264 wcbar1[q][d] <= 7500.0 * y[q]),

265 isInMode1[q][’alpha’,q,i] >= 1 * y[q],

266 wmbar1[q][’alpha’,i] = matlFlowa[q] * delt1[q][i],

267 wcbar1[q][’alpha’,i] = costFlowa[q] * delt1[q][i]

268)

269),

270

271 (CONJ i:N

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 170

9.5. FORMAL MIP MODEL

272 exists y:[MODES[’beta’]] -> [0, 1]

273 exists wmbar1:[MODES[’beta’]] -> [(AUT * N)] -> <0.0, 2000.0>

274 exists wcbar1:[MODES[’beta’]] -> [(AUT * N)] -> <0.0, 7500.0>

275 exists isInMode1:[MODES[’beta’]] -> [(a:AUT * MODES[a] * N)] -> [0, 1]

276 exists delt1:[MODES[’beta’]] -> [N] -> <0.0, 500.0>

277

278 (CONJ d:N

279 delt[d] = SUM q:MODES[’beta’] delt1[q][d]),

280 (CONJ d:(a:AUT * MODES[a] * N)

281 isInMode[d] = SUM q:MODES[’beta’] isInMode1[q][d]),

282 (CONJ d:(AUT * N)

283 wcbar[d] = SUM q:MODES[’beta’] wcbar1[q][d]),

284 (CONJ d:(AUT * N)

285 wmbar[d] = SUM q:MODES[’beta’] wmbar1[q][d]),

286 SUM q:MODES[’beta’] y[q] = 1,

287 (CONJ q:MODES[’beta’]

288 (CONJ d:(a:AUT * MODES[a] * N)

289 0 * y[q] <= isInMode1[q][d],

290 isInMode1[q][d] <= 1 * y[q]),

291 (CONJ d:N

292 0.0 * y[q] <= delt1[q][d],

293 delt1[q][d] <= 500.0 * y[q]),

294 (CONJ d:(AUT * N)

295 0.0 * y[q] <= wmbar1[q][d],

296 wmbar1[q][d] <= 2000.0 * y[q]),

297 (CONJ d:(AUT * N)

298 0.0 * y[q] <= wcbar1[q][d],

299 wcbar1[q][d] <= 7500.0 * y[q]),

300 isInMode1[q][’beta’,q,i] >= 1 * y[q],

301 wmbar1[q][’beta’,i] = matlFlowb[q] * delt1[q][i],

302 wcbar1[q][’beta’,i] = costFlowb[q] * delt1[q][i]

303)

304),

305

306 (* make sure each automaton is only in one mode in each interval *)

307 (CONJ i:N

308 isInMode[’alpha’,’on’,i] + isInMode[’alpha’,’off’,i] >= 1,

309 1 - isInMode[’alpha’,’on’,i] + 1 - isInMode[’alpha’,’off’,i] >= 1,

310 isInMode[’beta’,’hi’,i] + isInMode[’beta’,’lo’,i] >= 1,

311 1 - isInMode[’beta’,’hi’,i] + 1 - isInMode[’beta’,’lo’,i] >= 1

312),

313

314 (* symmetry breaking *)

315 (CONJ i:N2 1 - isDummyEvent[i] + isDummyEvent[i + 1] >= 1),

316 (CONJ i:N1

317 exists y:[{1, ..., 2}] -> [0, 1]

318 exists isDummyEvent1:[{1, ..., 2}] -> [N1] -> [0, 1]

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 171

9.5. FORMAL MIP MODEL

319 exists delt1:[{1, ..., 2}] -> [N] -> <0.0, 500.0>

320

321 (CONJ d:N

322 delt[d] = SUM i0:{1, ..., 2} delt1[i0][d]),

323 (CONJ d:N1

324 isDummyEvent[d] = SUM i0:{1, ..., 2} isDummyEvent1[i0][d]),

325 SUM i0:{1, ..., 2} y[i0] = 1,

326 (CONJ i0:{1, ..., 2}

327 (CONJ d:N

328 0.0 * y[i0] <= delt1[i0][d],

329 delt1[i0][d] <= 500.0 * y[i0]),

330 (CONJ d:N1

331 0 * y[i0] <= isDummyEvent1[i0][d],

332 isDummyEvent1[i0][d] <= 1 * y[i0]),

333 (case _{i.prop} i0 of

334 1 => 1 * y[i0] - isDummyEvent1[i0][i] >= 1 * y[i0]

335 | 2 => delt1[i0][i + 1] = 0.0 * y[i0]

336)

337)

338),

339

340 (* definition of isDummyTrans *)

341 (CONJ i:N1

342 1 - isDummyTrans[’alpha’,i] +

343 goesFromTo[’alpha’,’on’,’on’,i] + goesFromTo[’alpha’,’off’,’off’,i] >= 1,

344 1 - goesFromTo[’alpha’,’on’,’on’,i] + isDummyTrans[’alpha’,i] >= 1,

345 1 - goesFromTo[’alpha’,’off’,’off’,i] + isDummyTrans[’alpha’,i] >= 1

346),

347 (CONJ i:N1

348 1 - isDummyTrans[’beta’,i] +

349 goesFromTo[’beta’,’hi’,’hi’,i] + goesFromTo[’beta’,’lo’,’lo’,i] >= 1,

350 1 - goesFromTo[’beta’,’hi’,’hi’,i] + isDummyTrans[’beta’,i] >= 1,

351 1 - goesFromTo[’beta’,’lo’,’lo’,i] + isDummyTrans[’beta’,i] >= 1

352),

353

354 (* definition of isDummyEvent *)

355 (CONJ i:N1

356 isDummyTrans[’alpha’,i] + 1 - isDummyEvent[i] >= 1,

357 isDummyTrans[’beta’,i] + 1 - isDummyEvent[i] >= 1,

358 isDummyEvent[i] +

359 1 - isDummyTrans[’alpha’,i] + 1 - isDummyTrans[’beta’,i] >= 1

360),

361

362 (* definition of goesFromTo *)

363 (CONJ i:N1 CONJ a:AUT CONJ q1:MODES[a] CONJ q2:MODES[a]

364 isInMode[a,q1,i] + 1 - goesFromTo[a,q1,q2,i] >= 1,

365 isInMode[a,q2,(i + 1)] + 1 - goesFromTo[a,q1,q2,i] >= 1,

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 172

9.6. RESULTS

366 goesFromTo[a,q1,q2,i] +

367 1 - isInMode[a,q1,i] + 1 - isInMode[a,q2,(i + 1)] >= 1

368)

369

370 end

9.6 Results

The example in this chapter demonstrates the value of the novel modeling frameworks

introduced in this work. It is clear that the LCCA model is more intuitive than the general

MP model and much simpler than the MIP model. At a glance, this evident from the fact

the MIP model is much longer, but the true difficulty is even greater than this suggests.

The constraints of MIP are much more complex, and even experts would find it difficult

to think of them directly. Our MP language supports more intuitive constraint forms, and

our transformation procedure automatically generates the equivalent MIP. This is a large

savings in labor, does not require expertise in the transformation methods, and minimizes

the chance of error.

CHAPTER 9. APPLICATION: SWITCHED FLOW PROCESS 173

Chapter 10

Conclusions

We conclude by providing a summary of the main results from each chapter. Following

that we provide an assessment of our contributions, and, lastly, discuss directions for future

research.

10.1 Summary

Chapter 2 Modeling Hybrid Systems

• Defined the linear coupled component automata (LCCA) modeling framework.

• Finite domain constraints supported. Allows easily expressing resource constraints

between different processes.

• Explicit support for modeling dynamics. For example, guards make it easy to restrict

future behavior based on current state.

• Enforcement of variable localization encourages modular modeling. Change to any

process requires changing only corresponding component automata. Other automata

guaranteed to be unaffected.

• Showed that LCCA models are significantly easier to pose than MIP models, the

current standard for modeling discrete-continuous process systems. LCCA models are

smaller, easier to modify, and more intuitive.

Chapter 3 Optimizing Hybrid Systems

• Defined a procedure for systematically transforming LCCA models to MIP constraints.

• Methods provided include elimination of infinite quantifiers, removal of variable argu-

ments, and transformation of finite domain constraints to Boolean constraints.

• It is shown that automata can be represented with disjunctive constraints.

• Reformulation is likely efficient. Symmetry breaking constraints added to remove

redundant solutions. Convex hull method used for translating disjunctive constraints.

174

10.1. SUMMARY

• It is now possible to formulate the LCCA model more easily, mechanically generate

the equivalent but complex MIP model, and solve the problem with well-developed

existing MIP algorithms.

Chapter 4 Logical Formulation of Mathematical Programs

• Employed type theory to define a logic of mathematical programming.

• Constraints and whole programs can be treated as mathematical objects, which allows

defining operations on constraint and program spaces.

• Theory leads directly to software implementation.

• Definition of MP is simultaneously a language for naturally expressing an MP, in

contrast to matrix-based definitions.

• Boolean expressions, disjunctive constraints, and existential quantifiers supported.

• Software is trustworthy because its implementation is defined mathematically.

• Software development is greatly simplified.

• A clearer understanding is provided for what an MP algorithm should be. The solution

should be a proof describing the program’s execution. Explained that current practice

seems to follow a mixture of the classical and constructive traditions of proof.

• Certain error messages are shown to be explanations of the progress or lack thereof of

theorem provers, which allows rigorous treatment of the seemingly non-mathematical

matter of messaging.

Chapter 5 Compiling Mathematical Programs

• A binary relation between MP and MIP is defined. Interpreted algorithmically, this

is a procedure for transforming an MP to a MIP.

• Two main procedures defined are: conversion to conjunctive normal form, and refor-

mulation of disjunctive constraints.

• Our definitions formalize methods previously defined in less mathematical terms and

on only canonical forms.

• Precondition on compiler defined. Only MPs that can be expressed as MIPs are

transformed.

• Theory leads directly to automation of a procedure that has long been performed

manually.

CHAPTER 10. CONCLUSIONS 175

10.2. ASSESSMENT

Chapter 6 Index Sets

• Defined a finitary logic within which index sets can be defined in intuitive ways.

• Allows index sets to be treated as mathematical objects, rather than mere notational

conveniences eliminated at parse time.

• Type system defined semantically. More complex index sets are accepted as well-

formed.

• Advanced features supported include functions mapping to the space of all index sets,

dependent functions and products, case expressions and case types.

Chapter 7 Indexed Mathematical Programs

• Combined theories of Chapter 6 and 7 to provide a logic of indexed mathematical

programs.

• All contributions of Chapter 7 extended to indexed programs.

• Indexing allows retention of problem structure and maintains small program size.

• Theory makes it possible to develop genuinely novel algorithms, which are parametric

on the indexed structure.

Chapter 8 Compiling Indexed Mathematical Programs

• All contributions of Chapter 5 extended to indexed programs.

• Definition of conjunctive normal form defined in the presence of higher-order types.

• Compiler operates over indices. This both makes it faster and returns a program with

knowledge of the problem structure retained.

10.2 Assessment

In the Introduction chapter, we critiqued current definitions of mathematical programming

from both a mathematical and software perspective. Our claim was that a type theoretic

formulation improves on both and unifies the two efforts.

Our software firstly provides a computer language for expressing programs in a natural

way. We compare our language with four of the leading MP languages in use: GAMS,

AMPL, OPL, and Mosel. We do not compare to AIMMS because, although it provides

several enhancements, its modeling language is based on GAMS. Also, SIMPL (Aron et al.,

2004) provides several interesting language features, but they regard coupling modeling and

algorithmic constructs, which is outside the scope of our language.

Let us call the language developed in this work TyL, which stands for “typed language”

to emphasize its type theoretic formulation. TyL is the language whose abstract syntax p,

given by definition (7.5), must satisfy the judgement p prog, defined by rule (7.15), and

whose meaning is defined in Section 7.4. TyL also refers to the concrete syntax features

CHAPTER 10. CONCLUSIONS 176

10.2. ASSESSMENT

discussed in Appendix C, and the various operations we have defined for it, most notably

the compiler (8.42).

Table 10.1 lists language features in the first column, and a check mark indicates the

languages in which that feature is available. The list is biased towards modeling features

addressed in our work. The languages we compare with are all parts of commercial products

and have many features not listed. Nonetheless, the table shows that TyL provides many

features not available in them. Often we credited the other languages with features that are

not supported as thoroughly or rigorously as in TyL.

Language Feature GAMS AMPL OPLa Moselb TyL
Boolean expressions X X

disjunctive constraints X X X

index type functions X X X

index set operations X X X

expression functions X X X

proposition functions X

functions returning tuples X

dependent products X X X

dependent functions X

case expressions X X X X

index case types X X

case propositions X

conditional index sets X X X

syntax checker X X X X X

type system X

computation on reals
Boolean to IP compiler X

disjunction to MIP compiler X X

aBased on OPL Studio 3.7.1. Version 4.0 has reduced features.
bIncluding XPress-Kalis.

Table 10.1: Comparison of features in several modeling languages.

Of the previous languages, only Mosel provides the Boolean data type. It does not

however distinguish between Boolean and propositional truth, as we do in TyL. Since only

Boolean expressions can be converted to pure integer inequalities, the Boolean expression

compiler available in TyL would be difficult to provide in Mosel. It has no mechanism for

even knowing which class of expressions the procedure could be applied to.

The situation is similar in OPL, which treats truth and falsehood with the integers 1

and 0. Even propositions are treated as integers. If x = 3 is true, the whole equation is

treated as the integer 1. The expression 1 + (x = 3) is thus legal in OPL. Such a design

decision probably stems from two widely held misconceptions: the integers 1 and 0 can be

used to represent truth and falsehood and that there is only one notion of truth. Even if one

manages to work out a consistent theory with these decisions, it is not beneficial to do so.

The distinction between expressions and propositions is relied upon by many mathematical

methods. It is not clear to us how the disjunctive proposition compiler provided in TyL

could be defined within a framework that does not make this distinction.

AMPL and OPL have a limited form of the dependent product type. Interestingly,

CHAPTER 10. CONCLUSIONS 177

10.2. ASSESSMENT

only flat products are available, meaning there cannot be a product of products. Placing

this restriction in a language formulated type theoretically would actually require additional

work. Such generalizations are obtained for free. The basic reason is neither language treats

products as a type. What they call types are only the base types, such as real. Higher types,

those composed of other types, are formulated separately. Our formulation of TyL makes it

clear that these ideas can be unified, simultaneously simplifying the theory and producing

a more powerful language.

Although functions of various forms are available in several of the previous languages,

it is clear that none have provided a robust functional theory. Functions are not first class

entities; they cannot be passed as arguments to or returned by other functions. There cannot

be tuples of functions, nor can functions return tuples. These are elementary features in

TyL.

We formalized indexed expressions as being of function type, where the domain is an

index set and the codomain an MP type. The statement xi is thus interpreted as a function

x being applied to the argument i. We are also able to easily translate this idea to the level

of propositions, providing indexed propositions.

Two important indexing features are not available in TyL. There are no set operations,

such as union and intersection, and it is not possible to define sets conditionally. An example

of a conditional set is J = {i ∈ I | i ≤ 10}. There should not be any significant challenges

in extending TyL with these features. Dependent types do already provide some equivalent

features. The second component of the TyL index set i : I × [i, 10] is effectively the set J .

Neither TyL nor any of the other languages have resolved the issue of computing on the

reals. A straightforward implemenation of the semantics of TyL is not possible. At present,

the practical option is to treat reals as floats in an algorithm. There is then no guarantee

that the algorithm is giving correct answers, but this is the situation in all software. Correct

real computations are a subject of much research by others.

All language implementations have some kind of syntax checker. This is a basic re-

quirement. However, we hesitate to claim that the previous languages have defined a type

system. Typing judgements are formal set relations, which have not been provided for the

previous languages. The judgement p prog does not simply check that an input syntax is

well-formed; it is the definition of what a program is.

The broad point is that TyL is more trustworthy and more expressive (in those features

we addressed), while simultaneously having a less complex software design. The reason is

we have provided a theoretical basis for software development by treating it as a problem

in type theory.

This equates design of a language with invention of a mathematical system. Thus, our

formulation of TyL is simultaneously an alternative definition for mathematical programs.

Table 10.2 compares the previous numerical algebraic formulation of MP, as in definition

(1.4) on page 9, with our type theoretic formulation.

Definition (1.4) is compact and simple, and it of course makes it readily apparent how

all the results of numerical mathematics can be employed to study and solve an MP. Our

definition of TyL spans a few chapters. This is partly because we take care of many details

that are taken for granted in the compact notation of linear algebra, but largely it is because

CHAPTER 10. CONCLUSIONS 178

10.2. ASSESSMENT

Definition Style
Matrix\Numerical Type Theory\Logical

simple compact definition X

numerical methods applicable X X

knowledge retention mechanisms X

extensible X

non-numerical operations X

practical modeling system X

varied algorithms easily employed X

leads to computer implementation X

Table 10.2: Comparison of definitions of mathematical programs.

many more features are provided.

The logical formulation in no way excludes the application of any existing analyses.

Definition (1.4) can be thought of as a special case of TyL. It is a canonical form, and we

could (but did not yet) provide a method for transforming a TyL program to this form.

Expressions of type σ → τ and σ1 × σ2 → τ can be interpreted as vectors and matrices.

TyL has many more types than this. These provide the ability to express programs

more naturally, and more efficient representations are possible. Dependent index sets allow

representing non-rectangular matrices; so only the necessary elements need be declared.

Also, they extend the theory of MP in ways that a matrix based definition could not, for

example to include Boolean propositions. It should be clear that further extensions to TyL

would be straightforward. Enumerated types, of the form available in the indexing logic,

could be readily added to the MP types. (The enumerated type is available in OPL, and

AMPL has plans to introduce it.)

A richer syntax serves algorithms also. Each syntactic form represents knowledge in a

distinct manner. The syntax of TyL maintains all the knowledge provided by a modeler. A

constraint indexed over a set S is a single constraint in TyL, and an algorithm could operate

on it as such. In contrast, indexing has till now been treated as a notational convenience.

An indexed constraint is expanded out to numerous unindexed constraints. This discards

the knowledge that all these constraints actually have an identical structure, and now there

are |S| constraints that must be operated on, instead of one.

Although we did not provide algorithms for solving an MP, we did provide some other

operations on MP, the compiler for example. Since indices are retained, the generated

programs are compact and the compiler runs faster. Expanding an indexed disjunction or

Boolean expression would cause the same operations to be performed many more times.

Above, we stated that a type theoretic formulation of a computer language is simultane-

ously a definition of a mathematical system. Conversely, a type theoretic definition of MP

immediately leads to a practical modeling language. The compact matrix definition of an

MP clearly does not provide this. Models are never written in this form.

The reason for several of the above benefits is that our formulation of TyL treats indices,

expressions, propositions, and programs as rigorously as current methods treat numbers. It

is a central notion of mathematical logic that a standard of rigor can be established for all

manner of constructs.

CHAPTER 10. CONCLUSIONS 179

10.3. FUTURE WORK

This is necessary to define the compilation of MP to MIP. A compiler is an operation

whose domain and codomain are program spaces. A mathematical definition of this oper-

ation requires these spaces to be defined first. The conversion of Boolean expressions to

integer inequalities is considered established knowledge. Similarly, the convex hull trans-

formation of a disjunctive constraint was provided many years ago. It is not surprising

however that none of the MP software we have reviewed provide these transformations,

although their importance is well known. Automation requires a mathematical definition of

these methods on programs as written in practice. The binary relation pmp prog
7−→ pmip is the

first such definition.

Our definition of the semantics of MP is a first step towards providing an algorithmic

theory of MP. Current concepts of what an algorithm is refer to the result of an algorithm,

i.e. that the value returned should have a certain property. This however does not classify

the methods that might be used to get to this result. We discussed that the methods sought

are often constructive proofs.

10.3 Future Work

There are some important features our language would benefit from. As mentioned above,

set operations, such as union and intersection, are certainly important and should be pro-

vided. Also, conditional index sets should be supported, which requires introducing propo-

sitions into the indexing logic.

Indexed versions of most operators were provided in the logic of indexed MP, but Boolean

conjunction and disjunction were excluded. Adding these into the language is actually

straightforward, but the compiler becomes difficult to define. Consider the conversion of

ORi:σ (ANDi′:σ′ e) to conjunctive normal form. One possible answer is

ANDf :(i:σ→σ′) (ORi:σ {f (i) /i′} e)

However, this result is not expressible in our language because we do not support index sets

of the form i : σ → σ′. Another possible answer is

ANDi:σ (si ∨ ANDi′:σ′ e)

where the constraint not (ANDi:σ si) is also required. However, this statement is incomplete

because the slack variable si was never introduced; our language has no mechanism for

introducing variables into Boolean expressions. In either case, some extensions are necessary

to transform indexed Boolean operators.

Our treatment of semantics was not as formal as that of the MP language. Much

work remains to be done here. Firstly, a language of proof terms is needed. This would

serve as a definition of the space of algorithms that could be applied to solve an MP. An

implementation will only be possible when real numbers are treated constructively. Absent

that, it will be important to develop a theory of approximate program execution, allowing

a quantitative assessment of how close a found solution is to the true solution.

Differential equations would enhance the language’s utility well beyond the present focus

CHAPTER 10. CONCLUSIONS 180

10.3. FUTURE WORK

of mathematical programming. The compiler technology that becomes available with a type

theoretic formulation would be very valuable because discretization of differential equations

can be thought of as a program transformation. It is a mapping from the space of differential

equations to the space of algebraic equations. Also, a logic of differential equations is a

prerequisite to a logic of hybrid systems.

Finally, a very promising application of type theory is to define domain specific logics.

For example, it should be possible to design a logic in which “molecule”, “atom”, and other

chemical concepts are intrinsic notions. Then, we would have a mathematical system specif-

ically designed to express chemical phenomena. The gap between physics and mathematics

would be truly narrowed.

CHAPTER 10. CONCLUSIONS 181

Appendix A

Reformulating Mathematical

Programs

We use the term mathematical program (MP) to refer to the most general class of problems

studied under this name. There are commonly used names referring to frameworks with only

some features supported. In Figure A.1 we depict the relationship between these. A linear

program (LP) allows equations and inequalities on the reals (also an objective function but

our focus is on the constraints). When the constraints are allowed to be nonlinear, the term

nonlinear program (NLP) is used. A mixed-integer program (MIP) allows requiring certain

variables to be integer. If only linear constraints are allowed, it is called a mixed-integer

linear program (MILP).

LP

DP

MIP

GDP
2

1

3

Figure A.1: Relationships between specialized MP frameworks. A
n

−→ B means language
B enhances language A with feature n, where n can be (1) integer variables, (2) disjunctive
constraints, (3) Boolean logic.

In LP, we have a system of inequalities, by which is meant a conjunction of inequalities.

A disjunctive program (DP) also allows disjunctive constraints. These are in the form

[
A1x ≤ b1

]
∨
[
A2x ≤ b2

]
, (A.1)

where Ai is an m × n coefficient matrix, x is an n × 1 vector of real variables, and bi is

an m × 1 vector of constants. Superscripts are used to denote multiple entities of a similar

type, e.g. b1 and b2 are two different m × 1 vectors, and subscripts to access components

of matrices or vectors, e.g. b2
1 is the first element of b2, and b1

2 is the second element of b1.

Instead of requiring all inequalities to hold, as in LP, a disjunctive constraint requires just

one of several to hold.

182

A.1. SIMPLE REFORMULATIONS

Finally, a generalized disjunctive program (GDP) also allows Boolean expressions. Each

disjunct of a disjunction can also be marked with a Boolean variable indicating that that

disjunct is satisfied only if the corresponding Boolean variable is.

By general mathematical program, we refer to the system in which all of these features are

supported in complete generality. Nested disjunctions are allowed, as are integer variables,

and Boolean expressions of any form can be used within disjunctions and elsewhere.

In this Appendix, we review methods for converting certain constraint forms. We focus

on programs with linear constraints, but some of the methods are applicable to the non-

linear case. Our review is conceptual. Formal definitions of MP frameworks and of the

transformation of a general MP to a pure MIP is the subject of Chapters 4–8.

A.1 Simple Reformulations

Consider the disjunctive constraint






x1 ≥ 1

x2 ≥ 1

x1 + x2 ≤ 5






︸ ︷︷ ︸

R1

∨

[

5 ≤ x1 ≤ 8

4 ≤ x2 ≤ 7

]

︸ ︷︷ ︸

R2

(A.2)

which we use as an example throughout. The feasible space of this constraint is depicted in

Figure A.2a. A conjunction of inequalities defines a polyhedral region, but a disjunction of

inequalities defines a (possibly) disjoint union of polyhedra. There are few algorithms for

solving a DP directly. Thus, our goal is to convert this constraint into a MIP form.

x1

x2

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

0

R1

R2

(a) Feasible region.

x1

x2

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

0

(b) Big-M relaxation.

x1

x2

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

0

(c) Convex hull relaxation.

Figure A.2: Properties of disjunctive constraint (A.2).

An obvious but poor solution is to multiply the inequalities of each disjunct by a unique

binary {0, 1} variable. For the ith disjunct, introduce λi ∈ {0, 1} and allow exactly one of

the λi’s to equal 1. The idea is that if λk = 1, the kth disjunct is enforced, and the ith

APPENDIX A. REFORMULATING MATHEMATICAL PROGRAMS 183

A.1. SIMPLE REFORMULATIONS

disjunct is disregarded for all i 6= k. For the example, we have






x1λ1 ≥ 1λ1

x2λ1 ≥ 1λ1

(x1 + x2) λ1 ≤ 5λ1




 (A.3a)

[

5λ2 ≤ x1λ2 ≤ 8λ2

4λ2 ≤ x2λ2 ≤ 7λ2

]

(A.3b)

λ1 + λ2 = 1 (A.3c)

The disjunction has been eliminated, and we have purely a conjunction of inequalities, with

some variables integer. One possible solution would set λ1 = 1 and λ2 = 0. In this case, the

first set of inequalities reduces to the original disjunct R1, and the second set degenerates into

trivially satisfied constraints 0 ≤ 0, effectively disregarding disjunct R2. Alternatively, the

solution could be λ1 = 0 and λ2 = 1, in which case the second disjunct would get enforced.

Although simple, this reformulation is nonlinear. We can do better—a linear reformulation

can be obtained when the inequalities comprising the disjuncts are themselves linear.

The big-M method is one way to accomplish this. Again, binary variables λi are intro-

duced, one for each disjunct. Constraint (A.1) is reformulated into

A1x − b1 ≤ M1 (1 − λ1) (A.4a)

A2x − b2 ≤ M2 (1 − λ2) (A.4b)

λ1 + λ2 = 1 (A.4c)

where M i are the so called big-M parameters. These are known upper bounds on Aix− bi.

Consider λ1 = 1 and λ2 = 0. The second inequality reduces to A2x − b2 ≤ M2, which is

trivially satisfied because, by definition, M2 is the maximum value the left-hand-side could

take. Effectively, disjunct R2 is disregarded. The first inequality reduces to A1x − b1 ≤ 0,

which is the original disjunct R1. So these MILP constraints are seen to be equivalent to

constraint (A.1). The big-M reformulation of example (A.2) is






−x1 + 1 ≤ 0 (1 − λ1)

−x2 + 1 ≤ 0 (1 − λ1)

x1 + x2 − 5 ≤ 10 (1 − λ1)




 (A.5a)









−x1 + 5 ≤ 4 (1 − λ2)

x1 − 8 ≤ 0 (1 − λ2)

−x2 + 4 ≤ 3 (1 − λ2)

x2 − 7 ≤ 0 (1 − λ2)









(A.5b)

λ1 + λ2 = 1 (A.5c)

Most algorithms for solving MILP algorithms first solve a relaxation of the problem.

APPENDIX A. REFORMULATING MATHEMATICAL PROGRAMS 184

A.2. CONVEX HULL REFORMULATION

Relaxation means the binary {0, 1} variables are instead allowed to be reals within the

interval [0, 1]. The size of the region defined by the relaxation can affect the performance

of the algorithm significantly. In Figure A.2b, we show the feasible space of the above

constraints, after relaxing the binaries, projected onto the (x1, x2) space.

Determining this projection is not so straightforward. Hooker (2000, p. 250) provides

a general method, but an ad hoc procedure is sufficient for this small example. Consider

constraints (A.5) as parametric on λ1 and λ2, which effectively means parametric on λ1

because λ2 = 1 − λ1. Several of the inequalities are independent of λ1 because it is being

multiplied by 0. From these, we can infer that the region is at most the square defined by

1 ≤ x1 ≤ 7 and 1 ≤ x2 ≤ 8. The three inequalities that do depend on λ1 define a triangle.

It is not too difficult to determine that the points of this triangle are

A = (5 − 4λ1, 4 − 3λ1) (A.6a)

B = (5 − 4λ1, 10 − 6λ1) (A.6b)

C = (11 − 7λ1, 4 − 3λ1) . (A.6c)

Each choice of λ1 ∈ [0, 1] determines a specific triangle. The relaxed big-M region is the

union of all these triangles intersected with the aforementioned square. The union of the

triangles can be determined by considering the locus of points A for each choice of λ1, and

similarly for B and C. Each locus of points is a line. The vertices of the final polygon can

be determined by calculating where these lines intersect the lines of the square. They are

(1.0, 1.0), (4.0, 1.0), (8.0, 2.7), (8.0, 7.0), (3.0, 7.0), and (1.0, 4.0).

It is possible to provide MILP constraints whose relaxation provides a tighter convex

region, indeed the tightest possible.

A.2 Convex Hull Reformulation

Balas (1974) defined a reformulation that provides the convex hull of the region defined by

a disjunctive constraint. Theorem 2.1 of this work states that the convex hull of (A.1) is

A1x̄1 ≤ b1λ1 (A.7a)

A2x̄2 ≤ b2λ2 (A.7b)

λ1 + λ2 = 1 (A.7c)

x = x̄1 + x̄2 (A.7d)

where λi ∈ [0, 1]. In each of the ith disjuncts, vector x has been replaced with a new vector of

variables x̄i. This causes the inequalities of each disjunct to be disaggregated, meaning they

have no variables in common. For this reason, the x̄i’s are called the disaggregated variables.

Finally, the original x is defined to be a sum of the new x̄i’s. As we have presented it, the

assumption of Balas (1974, Corollary 2.1.1) must be satisfied, which essentially requires

each disjunct to be bounded. This also allows including disjuncts that are infeasible, i.e.

APPENDIX A. REFORMULATING MATHEMATICAL PROGRAMS 185

A.2. CONVEX HULL REFORMULATION

define an empty region. We will shortly discuss how to handle disjunctive constraints not

satisfying this condition.

Note that the λi’s are not binary, and constraints (A.7) are pure LP constraints. They

define the convex hull of (A.1), not the equivalent feasible space. Nonetheless, Balas (1974,

Corollary 2.1.2) states that the LP (assuming a linear objective) is equivalent to the DP.

Interestingly, it also states that this is so when the LP’s solution gives λk = 1 and λi = 0 for

all i 6= k. In other words, equivalence requires the λi’s to be integral. Certain algorithms

may satisfy this requirement.

However, we wish to provide an equivalent model without referring to any properties

of algorithms that may are may not be used to optimize the model. Thus, we require

λi ∈ {0, 1}, not λi ∈ [0, 1]. Then, constraints (A.7) are MILP constraints, and they define

a region identical to the DP. Consider the solution with λ1 = 1 and λ2 = 0. The inequality

corresponding to the second disjunct becomes A2x̄2 ≤ 0. Coupled with the precondition

that the disjunct be bounded, this forces x̄2 to equal 0 (as will be demonstrated in the

following example). This then means x = x̄1, and the first inequality becomes identical to

the first disjunct, as desired.

The convex hull reformulation of example (A.2) is






x̄1
1 ≥ 1λ1

x̄1
2 ≥ 1λ1

x̄1
1 + x̄1

2 ≤ 5λ1




 (A.8a)

[

5λ2 ≤ x̄2
1 ≤ 8λ2

4λ2 ≤ x̄2
2 ≤ 7λ2

]

(A.8b)

λ1 + λ2 = 1 (A.8c)

x = x̄1 + x̄2 (A.8d)

where we require λi ∈ {0, 1}. Consider the solution with λ1 = 1 and λ2 = 0. The second

set of inequalities degenerate into

[

0 ≤ x̄2
1 ≤ 0

0 ≤ x̄2
2 ≤ 0

]

which forces x̄2 to equal 0. This makes x = x̄1, and the first set of inequalities become

equivalent to disjunct R1.

Relaxing to λi ∈ [0, 1] gives the convex hull, depicted in Figure A.2c. The convex hull is

easy to determine visually, so we have drawn it without actually calculating the projection

of the constraints. Notice that this region is smaller than that of Figure A.2b, which was

obtained with the big-M method.

Even though we require the λi’s to be binary, relaxing them gives the convex hull, and

we can expect this to be a good reformulation. This is often true but not definite. As will

be discussed next, it is frequently necessary to add additional constraints into the disjuncts.

Generally, the convex hull reformulation requires many more constraints than the big-M

APPENDIX A. REFORMULATING MATHEMATICAL PROGRAMS 186

A.2. CONVEX HULL REFORMULATION

reformulation, which can offset its benefits. Another motivation for choosing to implement

the convex hull method is that the big-M method requires calculating the big-M parameters,

making it somewhat more difficult to automate. Eventually, our software should allow both,

and users should be able to select the method they prefer.

We have assumed thus far that the region defined by each disjunct is bounded, and the

example we have been working with satisfied this requirement. The constraint

[x ≤ 1] ∨ [x ≥ 4] (A.9)

is reasonable, but it entails two unbounded regions. It would be useful to allow it. First, let

us observe that the convex hull reformulation is not applicable. If we mistakenly apply it,

we get

[
x̄1 ≤ 1λ1

]
(A.10a)

[
x̄2 ≥ 4λ2

]
(A.10b)

λ1 + λ2 = 1 (A.10c)

x = x̄1 + x̄2. (A.10d)

Now consider λ1 = 1 and λ2 = 0. The second inequality becomes x̄2 ≥ 0, but this does

not force x̄2 = 0 as needed. The system is satisfied with x̄1 = 1 and x̄2 = 2. This makes

x = 1 + 2 = 3, which is infeasible for the disjunctive constraint.

Balas’s requirement is that there is a system of inequalities A′x ≤ b′, external to the

disjunctive constraint, which is bounded. The overall DP is then

A′x ≤ b′ (A.11a)

[
A1x ≤ b1

]
∨
[
A2x ≤ b2

]
, (A.11b)

where Aix ≤ bi need not be bounded. The reformulation is done by first inserting the

bounded constraint into each disjunct, giving

[

A′x ≤ b′

A1x ≤ b1

]

∨

[

A′x ≤ b′

A2x ≤ b2

]

. (A.12)

Each disjunct is now bounded.

In our automation of the convex hull method, we take a somewhat brute force approach

to providing A′x ≤ b′. We require that every variable xi involved in a disjunction have

known lower Li and upper Ui bounds. The inequalities Li ≤ xi ≤ Ui serve the role of

A′x ≤ b′. This is more restrictive than necessary, but the more flexible approach requires

determining whether an arbitrary inequality A′x ≤ b′ is bounded. This should not be too

difficult, but we have not yet implemented this procedure.

We have also been assuming that there is only one disjunctive constraint. Of course, one

APPENDIX A. REFORMULATING MATHEMATICAL PROGRAMS 187

A.3. ADDING BOOLEAN PROPOSITIONS

might want to write the model

R1 ∨ R2 (A.13a)

R3 ∨ R4 (A.13b)

where Ri stands for Aix ≤ bi. There are two disjunctive constraints, or a conjunction of

disjunctions. Simply applying the convex hull method to each disjunction separately does

not give the convex hull of this problem. Rather, the constraints must be put into disjunctive

normal form (DNF) to produce the single disjunction

[

R1

R3

]

∨

[

R1

R4

]

∨

[

R2

R3

]

∨

[

R2

R4

]

. (A.14)

This is a much bigger system, and it is not clear that obtaining the convex hull this way

is advantageous. Balas (1974, Section 5) provides another method known as sequential

convexification to handle multiple disjunctions. Our software does not implement either of

these methods yet. We simply apply the reformulation to each disjunction separately. Thus,

we cannot call our method a convex hull reformulation overall, but the convex hull of each

disjunction is obtained.

A.3 Adding Boolean Propositions

LP entails purely continuous systems; models are a conjunction of inequalities on reals. DP

allows representing discrete phenomena by enriching the logical operators to conjunction and

disjunction. MILP also allows representing discrete phenomena, but extends LP differently.

Instead of enriching the operators, it enriches the data types. Variables can either be real or

integer. Another useful extension is to include Boolean propositions because much discrete

phenomena is most naturally expressed in this form. We first introduce Boolean propositions

by themselves and discuss how they can be transformed into a system of linear inequalities

on binary {0, 1} variables. This will be followed by a discussion of their incorporation into

disjunctive programs.

Let Y be a set of Boolean variables. A Boolean proposition allows connecting these

variables with the operators negation ¬, conjunction ∧, and disjunction ∨. Other operators

such as implication ⇒ can be defined in terms of these. The conversion of Boolean proposi-

tions into integer constraints has been discussed by several authors (e.g. Mitra et al., 1994;

Bemporad and Morari, 1999; Hooker, 2000), and Sasao (1999) provides a general review of

Boolean algebra.

A simple procedure is to replace each Boolean variable Y with a binary {0, 1} variable

y. A negated variable ¬Y is replaced with the expression 1 − y, disjunction ∨ is replaced

with addition +, and conjunction ∧ is replaced with multiplication ∗. Finally, the resulting

expression is required to be ≥ 1, corresponding to requiring it to be true. For example,

Y1 ∨ (Y2 ∧ ¬Y3) (A.15)

APPENDIX A. REFORMULATING MATHEMATICAL PROGRAMS 188

A.3. ADDING BOOLEAN PROPOSITIONS

becomes

y1 + (y2 ∗ (1 − y3)) ≥ 1. (A.16)

The resulting constraint is nonlinear. It is possible to do better—a linear system can

always be obtained. This requires first putting the Boolean proposition into conjunctive

normal form (CNF), a procedure discussed in many places; see for example Visser (2001) or

Chang and Lee (1987, p. 12–15). Then, instead of replacing conjunction with multiplication,

each conjunct is separately transformed into an inequality. The CNF of (A.15) is

(Y1 ∨ Y2) ∧ (Y1 ∨ ¬Y3) . (A.17)

Each conjunct must contain only disjunctions and variables, possibly negated. This is

converted into the two inequalities

y1 + y2 ≥ 1 (A.18a)

y1 + (1 − y3) ≥ 1 (A.18b)

which are linear.

Interestingly, Raman and Grossmann (1994) introduce Booleans into DP in such a way

that the convex hull method can still be employed. Their extended framework is called

generalized disjunctive programming (GDP). Their definition of a disjunctive constraint,

simplified to the two disjunct case with linear inequalities, is

[

Y1

A1x ≤ b1

]

∨

[

Y2

A2x ≤ b2

]

(A.19)

where Yi ∈ {true, false}. The interpretation is that if Yk = true, then Akx ≤ bk is

enforced and Aix ≤ bi is disregarded for all i 6= k (we will see shortly that an implicit

requirement of their reformulation is that exactly one Yi be true). Separately, they allow a

Boolean proposition Ω, which can involve the Boolean variables Y . This has the benefit of

allowing additional logical conditions to govern which disjunct is active.

Their insight was that the λ variables introduced as part of the convex hull reformulation

could be useful in the original model. In Balas’s definition of a DP (A.1), the model cannot

make any use of λ. These variables arise only during the transformation. In (A.19), each

disjunct is labeled with a Boolean Yi, allowing this variable to be used elsewhere in the

model, and Yi is associated with λi. Their reformulation of (A.19) is exactly (A.7), but

now it is understood that λi is the binary variable replacing Yi. The proposition Ω (Y) is

replaced with inequalities involving λi’s.

In addition to the constraints on λ resulting from Ω (Y), the constraint λ1 + λ2 = 1

is also present because it is required as part of the convex hull reformulation. Thus, a

mutual exclusivity constraint over the Yi’s is implicit in Raman and Grossmann’s method,

i.e. exactly one Yi must be true.

The disjunctive constraints we support our work is more flexible. Amongst other exten-

sions, we allow any Boolean proposition within disjunctions, rather than a single Boolean

APPENDIX A. REFORMULATING MATHEMATICAL PROGRAMS 189

A.4. CONCLUSIONS

variable. For example, one could write

[

Ω1 (Y)

A12x ≤ b12

]

∨

[

Ω2 (Y)

A22x ≤ b22

]

. (A.20)

This is reformulated by first converting the Boolean propositions into integer inequalities,

giving
[

A11y ≤ b11

A12x ≤ b12

]

∨

[

A21y ≤ b21

A22x ≤ b22

]

. (A.21)

We can rewrite this as
[
A1z ≤ b1

]
∨
[
A2z ≤ b2

]
(A.22)

where Ai combines Ai1 and Ai2, bi combines bi1 and bi2, and z is the vector of integer

variables y and real variables x. This is in the DP form (A.1), albeit with some variables

integer. Balas’s standard convex hull reformulation can be applied. This will provide the

convex hull of the disjunctive constraint with all z relaxed to reals. With some variables

integer, ideally we would like the integer hull, but that is not obtained. Balas (1979, Section

7) discusses possible improvements in this setting.

In this method, there is no correspondence between the λ’s generated as part of the con-

vex hull method and the Booleans Y . In each disjunct, one could always replace Ωi (Y) with

a new Boolean variable Y ′
i and separately require Y ′

i ⇔ Ωi (Y). Thus, the additional flexibil-

ity in this method over Raman and Grossmann’s is not that arbitrary Boolean propositions

are allowed in the disjuncts. It is that these need not be mutually exclusive.

Turning the discussion around, Raman and Grossmann’s method can be viewed as a

specialization of this general method. If each Ωi is in fact an individual Boolean variable Yi

and exactly one can be true, then the binary y replacing Y can play the role of the λ needed

for the convex hull reformulation. If these conditions are not met, both sets of variables y

and λ must be introduced, making the program larger.

A.4 Conclusions

We have discussed the basic methods for converting disjunctive constraints and Boolean

propositions into pure MILP constraints. These are considered established techniques. But

notice that our discussion here has always presented the models in a canonical form and

has not employed index sets. Even the simplest systems can rarely be modeled this way.

Furthermore, the transformations have been discussed in English. Consider the statement

“disjunctive constraint (A.1) can be reformulated into constraints (A.7)”. One might con-

sider this a rather precise statement since (A.1) and (A.7) are. It is not however a mathe-

matical definition of a transformation. A mathematical definition would provide a function

f : D → M, where D is the set of all DP constraints and M is the set of all MILP constraints.

These sets would include all constraints as one would want to write in practice, not just

APPENDIX A. REFORMULATING MATHEMATICAL PROGRAMS 190

A.4. CONCLUSIONS

canonical forms. We would then be able to apply this function as

f











x1 ≥ 1

x2 ≥ 1

x1 + x2 ≤ 5




 ∨

[

5 ≤ x1 ≤ 8

4 ≤ x2 ≤ 7

]





where the argument is literally constraint (A.2), and the result would be literally constraint

(A.8). Providing definitions at this level of rigor is the subject of Chapters 4–8 of this thesis

and is required for computers to understand our models and execute the transformations

automatically.

APPENDIX A. REFORMULATING MATHEMATICAL PROGRAMS 191

Appendix B

Variable Binding Meta-Logic

For the theories of un-indexed programs and index sets, Chapters 4 and 6, we presented

procedures for determining the set of free variables and substituting into various constructs.

Also, we assumed there was a method for α-converting bound variable names. In Section

7.1.2, we discussed that the number of such operations needed for indexed programs (aug-

mented with the let constructs of the concrete syntax) is combinatorial in the number of

syntactic categories. We now present a meta-logic within which the various logics discussed

in this dissertation can be defined. Operations regarding variables are defined once in this

meta-logic and become available automatically for any logic implemented within it. This

saves us the trouble of writing hundreds of functions.

We first discuss some relevant terminology. A binder is a syntactic item that introduces

a variable. For example, the λ in λi : σ � e and the
∑

in
∑

i:σ e are binders. The full

terms λi : σ � e and
∑

i:σ e are called binding terms because they introduce variables that

are bound within them, i.e. the variables do not have any significance outside the terms.

Sometimes there is no symbol associated with a binder. For example, i : σ → τ is a binding

term that introduces the variable i, but there is no symbol prefixing the i. The scope of

a variable is its range of significance. In λi : σ � e, the scope of i is e. Any i that might

happen to occur in σ is unrelated to the i being introduced in this term. Binding terms can

be α-converted. Since the variable introduced in a binding term has no significance outside

the term, its name can be changed without altering the meaning of the term. For example,

λi : [1, i] � i + 1 can be α-converted to λj : [1, i] � j + 1. The introduced i is renamed to j,

and all uses of it are correspondingly changed. The i in [1, i] remains unchanged.

The meta-logic internalizes these concepts. The abstract syntax of programs captured

the structure of arithmetic expressions. For example, the rules for constructing expressions

tell us whether an expression is an addition, one of whose sub-expressions is a multiplication,

or vice-versa (Harper, 2005, Chp. 5). The notion of a bound variable and scoping rules were

however not captured. For example, there is nothing intrinsic in the term λi : σ � e that

requires the scope of i to be e. We could have also declared σ to be in its scope. These

decisions are external to the abstract syntax. Internalizing these concepts in the meta-logic

allows us to define, in an abstract way, the operations that depend on them.

192

B.1. SYNTAX

B.1 Syntax

The syntax of the meta-logic is parameterized on syntactic categories c and term-producing

operators o, which are dependent on the logic of interest. Say our intention is to implement

the indexed programming language within the meta-logic. Then, we would define

c ::= expri | typei | kindi | expr | type | prop | prop type | prog (B.1)

Each c refers to one of the syntactic categories of the language. For example, expri refers

to the set of all index expressions ε, and expr refers to all program expressions e. In

the chapters, we did not give names to such sets. The notation ε referred to a single

index expression, and it referred generically to any element adhering to the syntax of index

expressions. Now we give the name expri to the set of all index expressions.

Every specific syntactic form can be thought of as being generated by a term-producing

operator. For example, ε1 + ε2 is generated by the operator plusε. This operator takes two

terms ε1 and ε2 and returns ε1 + ε2. The operator applyie takes two arguments, e1 and e2,

and returns the application e1 e2. As one more example, “intε k” is a family of operators,

one for each integer k. So “intε 3” is an operator that takes zero arguments and returns a

term representing the index expression 3. We will also define the family of operators “inte

r”, which would return a program expression representing the number r, for any r.

Operators generating binding terms require arguments of two forms: terms, as in the

above examples, and bound variables. For example, the operator lambdae takes in the

arguments x, τ , and e and produces λx : τ � e. The x is not a term; it is the name of a

bound variable.

The full set of operators for the indexed programming language is defined at the end

of this appendix. One operator o must be defined for every form, except variables, of

every syntactic category. Variables are a primitive notion of the binding logic and a special

construct is made available for them. Assuming that c and o have been provided, we now

define the syntax of the meta-logic.

A variable

v := (x as c) (B.2)

in the meta-logic is an identifier as usual but also states the category to which it belongs.

With this design, there can be no confusion between variables of different categories. For

example (x as expri) and (x as expr) represent an index and program expression variable,

respectively. These are distinct variables even though they have the same name.

A term in the meta-logic is an abstraction of all constructs belonging to any syntactic

category. Its syntax is

t ::= VAR v | o p (B.3)

The first form VAR v turns a variable into a term. The second form o p represents an operator

o applied to its arguments p. The argument to an operator is a list of terms and bound

variables. Precisely, its syntax is

p ::= ∅ | p, v� | p, t (B.4)

APPENDIX B. VARIABLE BINDING META-LOGIC 193

B.2. JUDGEMENTS

The v� denotes the introduction of a variable v. All terms t occurring after some v� are in

the scope of v. A variable v is shadowed by a variable v′ if v�′ occurs to the right of v� and

v = v′. For clarity, angle brackets 〈〉 will be used to enclose a list that denotes a specific p.

The lone variable x used as an expression would be represented by the meta-logical term

VAR (x as expr). The same variable used as an index expression would be represented by the

term VAR (x as expri). All constructs other than variables are represented in the form o p.

For example, λx : τ � e is represented by the term lambda e 〈pτq, (x as expr) �, peq〉, where

lambdae is a term-producing operator, pτq is the term representing τ , and peq is the term

representing e.

VAR v is a family of operators. For example, VAR (x as expr) takes zero arguments and

returns a term representing the variable (x as expr). In that sense, the forms VAR v and o p

are similar. They differ only because the operators o have been abstracted out while VAR v

has not.

Operator argument lists p are categorized into the argument type

θ ::= ∅ | θ, c� | θ, c (B.5)

where c� denotes the set of bound variables of category c, and c (without the “�”) represents

the set of terms of category c. Square brackets [] will be used around a list denoting an

argument type θ.

Continuing the above example, the operator lambdae expects an argument of type

[type, expr�, expr]. This indicates that lambdae takes three arguments: a type, an intro-

duced expression variable, and an expression.

B.2 Judgements

Just as a type checker for the mathematical programming language detects ill-formed pro-

grams, we can define a type checker for the meta-logic to detect ill-formed logics. For exam-

ple, the operator lambdae is supposed to be applied to arguments of type [type, expr�, expr].

However, we might make a mistake when writing the mathematical programming logic in

the meta-logic. We might accidentally form the meta-logical term lambda e 〈pτq, peq〉 for

the expression λx : τ � e, forgetting the introduced variable. The type checker we define here

actually did catch a few such errors in our software. This pinpointed the bug precisely, and

it could be fixed easily. Without it, the error would have shown up in other ways that might

not have been tracked down easily.

Let o : θ mean operator o is supposed to be applied to an argument of type θ. Also,

an operator produces terms of a specific category, given by o n c. Finally, let c1 ≡ c2 be a

category equivalence relation. These judgements must be provided for the logic that will be

implemented within the meta-logic. Given these, we provide the following judgements.

APPENDIX B. VARIABLE BINDING META-LOGIC 194

B.2. JUDGEMENTS

Variable Equality

Let v = v′ mean variable v is identical to variable v′. Its definition is

c1 ≡ c2

(x1 as c1) = (x2 as c2)
where x1 = x2 (B.6)

It is assumed that there an equality test on alphanumeric strings x is available.

Category of Variable

For convenience, we let v n c mean v belongs to category c. Its definition is simply

(x as c) n c
(B.7)

Operator Type Equality

Let θ1 ≡ θ2 mean the two types are equivalent. The definition is inductive on the construc-

tion of θ,

∅ ≡ ∅
(B.8a)

θ1 ≡ θ2 c1 ≡ c2

[θ1, c1�] ≡ [θ2, c2�]
(B.8b)

θ1 ≡ θ2 c1 ≡ c2

[θ1, c1] ≡ [θ2, c2]
(B.8c)

Type of Operator Argument List

Let p : θ mean p is of type θ. Its definition is inductive on the form of p,

〈∅〉 : [∅]
(B.9a)

p : θ

〈p, (x as c) �〉 : [θ, c�]
(B.9b)

p : θ t n c

〈p, t〉 : [θ, c]
(B.9c)

An empty list of empty type. An introduced variable (x as c) � belongs in the category c�.

A term t belongs in the category c if t n c, defined next.

Category of Term

Let t n c mean t is a well-formed c term. Its definition is inductive on the form of t,

VAR (x as c) n c
(B.10a)

o : θ p : θ′ θ ≡ θ′ o n c

o p n c
(B.10b)

APPENDIX B. VARIABLE BINDING META-LOGIC 195

B.3. META-OPERATIONS

A variable term VAR (x as c) is always well-formed and is of category c. A term o p is well-

formed if the type of the applied operator is θ′ is equivalent to the type θ expected by the

operator o. The term belongs to category c if o n c.

B.3 Meta-Operations

We now define some operations on terms t of the meta-logic. The availability of these

operations is what frees us from defining numerous corresponding operations in the indexing

and mathematical programming languages.

B.3.1 Free Variables

Let FV (c, t) denote the free c variables of term t. For example, FV (expr, t) gives the free

expression variables in t, while FV (expri, t) gives the free index expression variables in t.

Its definition is mutually recursive with FV# (c, p), the free c variables in p. The definition

of FV (c, t) depends on the form of t,

1. FV (c, VAR v) =

{

{v} if v n c

∅ otherwise

2. FV (c, o p) = FV# (c, p)

The definition of FV# (c, p) is inductive on the construction of p in reverse,

1. FV# (c, 〈∅〉) = ∅

2. FV# (c, 〈v�, p〉) =

{

FV# (p) \ {v} if v n c

FV# (p) otherwise

3. FV# (c, 〈t, p〉) = FV (c, t) ∪ FV# (c, p)

B.3.2 Substitution

Let {t/v} t′ denote the substitution of term t for v in t′. Similarly, {t/v}# p is the substitu-

tion of t for v in p. Substitution is only defined if the category of t is the same as that of v.

Substitution into terms is defined by the rules

1. {t/v} (VAR v′) =

{

if v = v′ then t

else VAR v′

2. {t/v} (o p) = o {t/v}# p

Substitution into operator argument lists is defined by the rules

1. {t/v}# 〈∅〉 = ∅

APPENDIX B. VARIABLE BINDING META-LOGIC 196

B.3. META-OPERATIONS

2. {t/v}# 〈v′�, p′〉 =







if v 6∈ FV# (c, 〈v′�, p′〉) , where v n c, then

〈v′�, p′〉

else if v′ 6∈ FV (c′, t) , where v′ n c′, then
〈

v′�, {t/v}# p′
〉

else

{t/v}#

〈

v′′�, {VAR v′′/v′}# p′
〉

where in the final else branch, v′′, with v′′ n c′, chosen such that

v′′ 6∈ (FV (c′, t) ∪ FV# (c′, p′)) .

3. {t/v}# 〈t′, p〉 =
〈

{t/v} t′, {t/v}# p
〉

The second rule is similar to substitution into the existential proposition; see rule 6 on page

52.

B.3.3 Alpha Conversion

Given two terms, we would like to rename the bound variables in them so that they match.

Let (t1, t2)�
c (t′1, t

′
2) be the judgement relating two terms t1 and t2 to their α-converted

terms t′1 and t′2, such that any introduced variables, of category c, in t′1 and t′2 match. Most

of the work is done by the corresponding judgement on operator argument lists (p1, p2)�
c
#

(p′1, p
′
2). The definition of�c is

(VAR v1, o p2)�c (VAR v1, o p2)
(B.11a)

(o p1, VAR v2)�c (o p1, VAR v2)
(B.11b)

(VAR v1, VAR v2)�c (VAR v1, VAR v2)
(B.11c)

(p1, p2)�
c
(p′1, p

′
2)

(o p1, o p2)�c (o p′1, o p′2)
(B.11d)

There are no introduced variables in the term VAR v. Thus, if either t1 or t2 are of this form,

no matching needs to be done. If both are of the form o p, then �c
is employed.

APPENDIX B. VARIABLE BINDING META-LOGIC 197

B.4. EXAMPLE: INDEXED PROGRAM LOGIC

The definition of (p1, p2) �
c
(p′1, p

′
2) is inductive on the construction of p1 and p2 in

reverse,

(p2, p1)�
c
(p′2, p

′
1)

(p1, p2)�c
(p′1, p

′
2)

symmetry (B.12a)

(∅, p2)�c
(∅, p2)

(B.12b)

v n c (〈v�, p1〉 , p2)�
c
(p′1, p

′
2)

(〈v�, p1〉 , 〈t, p2〉)�c
(p′1, 〈t, p

′
2〉)

(B.12c)

v 6 nc (p1, p2)�
c
(p′1, p

′
2)

(〈v�, p1〉 , 〈t, p2〉)�c
(〈v�, p′1〉 , 〈t, p′2〉)

(B.12d)

(p1, p2)�
c
(p′1, p

′
2)

(〈t1, p1〉 , 〈t2, p2〉)�c
(〈t1, p′1〉 , 〈t2, p′2〉)

(B.12e)

v1 6 nc v2 6 nc (p1, p2)�
c
(p′1, p

′
2)

(〈v1�, p1〉 , 〈v2�, p2〉)�c
(〈v1�, p′1〉 , 〈v2�, p′2〉)

(B.12f)

v1 n c v2 6 nc (〈v1�, p1〉 , p2)�
c
(p′1, p

′
2)

(〈v1�, p1〉 , 〈v2�, p2〉)�c
(p′1, 〈v2�, p′2〉)

(B.12g)

v1 n c v2 n c ({VAR v/v1} p1, {VAR v/v2} p2)�
c
(p′1, p

′
2)

(〈v1�, p1〉 , 〈v2�, p2〉)�c
(〈v�, p′1〉 , 〈v�, p′2〉)

(B.12h)

where in the last rule v, with v nc, is chosen fresh such that v 6∈ (FV# (c, p1) ∪ FV# (c, p2)).

Actually, to maintain the same names as much as possible, v is chosen to be v1 if v1 6∈

FV# (c, p2), or v2 if v2 6∈ FV# (c, p1). The matching is done in the last rule. If both lists

begin with an introduced variable v1 and v2, respectively, the names of these two are changed

to a common v. The lists p1 and p2 are appropriately modified to reflect the name change.

All other rules simply recurse into their sub-lists.

A ternary matcher (t1, t2, t3) � (t′1, t
′
2, t

′
3) could be provided in analogy to the above

binary matcher. Our software implementation provides a general n-ary matcher.

B.4 Example: Indexed Program Logic

The meta-logic serves as a primitive logical framework, a framework within which languages

could be developed. Had we used it from the onset, the variables operations such as free

variable calculation, substitution, and α-conversion, would simply be available for use. How-

ever, we formulated our languages independent of the meta-logic. Thus, we must map our

original formulation, those in the chapters, to the syntax of the meta-logic.

The syntax of the meta-logic is parametric on o and c, and the judgements on o : θ, onc,

and c1 ≡ c2. The syntactic categories c were previously defined by rules (B.1). Category

equivalence is a reflexivity relation,

c ≡ c
(B.13)

An operator o is required for every syntactic construct of the indexed mathematical

APPENDIX B. VARIABLE BINDING META-LOGIC 198

B.4. EXAMPLE: INDEXED PROGRAM LOGIC

programming language, except for variables. The operators with their expected argument

types, i.e. the judgement o : θ, are stated in the table below. Subscripts have been used

in the naming scheme to emphasize which category the term operator generates a term for.

So these provide the judgement o n c.

Nothing really has been done in defining o. It is merely a change of notation. Instead

of denoting a plus expression as e1 + e2, we now write it as pluse (e1, e2). The latter uses a

name for the operator rather than a symbol.

Table B.1: Formulating indexed programs within meta-logic.

Operator o Argument Type θ

labelε l ∅

intε k ∅

tupleε k [expri1, . . . , exprik]

projε k [expri]

plusε [expri, expri]

minusε [expri, expri]

multε [expri, expri]

caseε {l1, . . . , lm} [expri, expri1, . . . , exprim]

caseε [kL, kU]
[
expri, expri1, . . . , exprikU−kL+1

]

negε [expri]

labelsσ {l1, . . . , lm} ∅

intervalσ [expri, expri]

productσ k [typei1, expri�1, . . . , typeik, expri�k]

caseσ {l1, . . . , lm} [expri, typei1, . . . , typeim]

caseσ [kL, kU]
[
expri, typei1, . . . , typeikU−kL+1

]

ascriptionσ [typei, kindi]

lambdaσ [expri�, typei]

applyσ [typei, expri]

IndexSetκ ∅

arrowκ [typei, expri�, kindi]

realτ ∅

boolτ ∅

productτ [type, . . . , type]

arrowτ [type, type]

arrowiτ [typei, expri�, type]

reale r ∅

truee ∅

falsee ∅

nege [expr]

pluse [expr, expr]

minuse [expr, expr]

multe [expr, expr]

note [expr]

APPENDIX B. VARIABLE BINDING META-LOGIC 199

B.4. EXAMPLE: INDEXED PROGRAM LOGIC

Table B.1: (cont.)

Operator o Argument Type θ

ore [expr, expr]

ande [expr, expr]

tuplee k [expr1, . . . , exprk]

proje k [expr]

lambdae [type, expr�, expr]

applye [expr, expr]

SUMe [typei, expri�, expr]

casee {l1, . . . , lm} [expri, expr1, . . . , exprm, expri�, type]

casee [kL, kU]
[
expri, expr1, . . . , exprkU−kL+1, expri�, type

]

lambdaie [typei, expri�, expr]

applyie [expr, expri]

ascriptione [expr, type]

isTruec [expr]

equalc [expr, expr]

ltec [expr, expr]

existsc [type, expr�,prop]

disjc [prop,prop]

conjc [prop,prop]

existsc [type, expr�,prop]

DISJc [typei, expri�,prop]

CONJc [typei, expri�,prop]

casec {l1, . . . , lm} [expri,prop1, . . . ,propm, expri�,prop type]

casec [kL, kU]
[
expri,prop1, . . . ,propkU−kL+1, expri�,prop type

]

Tc ∅

Fc ∅

progp (δ, k) [type1, expr1�, . . . , typek, exprk�, expr,prop]

lambdaic [typei, expri�,prop]

lambdac [type, expr�,prop]

applyic [prop, expri]

applyc [prop, expr]

ascriptionc [prop,prop type]

Propζ ∅

arrowiζ [typei, expri�,prop type]

arrowζ [type,prop type]

APPENDIX B. VARIABLE BINDING META-LOGIC 200

Appendix C

Concrete Syntax

Definitions of logics use what is called abstract syntax. For example, we state that e1 + e2

is an expression. It is immaterial to the theory whether the + actually occurs in between

the two expressions. What is important is that there is such a thing as addition in the

logic, and that addition involves two sub-expressions. Concrete syntax, on the other hand,

is concerned with such details. This is the syntax that is actually typed into an input file

accepted by the software implementation. Concrete syntax varies from the abstract syntax

for a few reasons.

Firstly, the parser is generated with the popular tools Lex and Yacc (Lesk and Schmidt,

1978; Johnson, 1979; Levine et al., 1995), and the syntax must be compatible with the

requirements of these tools. (Our code is written in ML. So we use the ML variants of

these, called ML-Lex and ML-Yacc.) These tools parse only ASCII text symbols. The LATEX

symbol
∑

, for example, must be written SUM. A summary of the relationship between the

ASCII and LATEX notation is provided at the end of this appendix.

An effort is made to provide the simplest syntax possible. For example, the dot used in

lambda abstractions is not required. It is sufficient to write λx e instead of λx � e.

The dot “�” is known as Peano’s dot, and can be used for clarity when desired. It is

actually an alternative to parentheses (Andrews, 2002, p. 15). It is customary to allow

parentheses to delimit expressions. One can write 3 ∗ (2 + 4) to indicate that the addition

should take precedence over the multiplication. We provide Peano’s dot in the concrete

syntax. It often leads to cleaner programs. The previous expression can instead be written

3 ∗ �2 + 4. Peano’s dot effectively stands for a left parenthesis. The right parenthesis is

inferred by placing it as far to the right as possible. As a result, the notation λx � e is still

valid, but the dot is not part of the function notation. Rather it is part of the expression.

And of course, plain ASCII text must be used. So “�” is written as a plain period “.”.

Sometimes, the concrete syntax is more cumbersome than the abstract syntax. Projec-

tions are denoted e.k, which could have been supported, but we instead require #k e because

this coincides with the convention of ML. Similarly, ε.k must be written #k epsilon. We

also have several application forms, σ ε, e ε, and c ε, where the argument is an index expres-

sion. In these cases, the argument must be surrounded with square brackets.

The main benefit of functions is that they can be defined once and reused, but our core

201

theory actually does not provide a mechanism for reusing functions. The concrete syntax

supports a “let” construct. This allows naming a syntactic entity and subsequently referring

to it by its name. One could write

let

expr f = fni i . x[i] + 1

in

y + f[5] = 3

end

which is a proposition employing a locally defined abbreviation. The line

expr f = fni i . x[i] + 1

declares that the name f refers to the expression fni i . x[i] + 1. Names for any syn-

tactic construct can be provided, but the parser is not able to look at the item to determine

what syntactic category it belongs to. The keyword expr is required to let the parser know

that the name f being introduced is for an expression, as opposed to say an index type. At

parse time, we eliminate all let constructs by substituting in the constructs that the names

stand for. The above becomes

y + (fni i . x[i] + 1)[5] = 3

In general, any number of abbreviations can be introduced for any syntactic construct.

Another example is

let

setf S = {‘A’, ‘B’, ‘C’}

propf p F = fni j . x[j] + 1 <= y[j]

in

CONJ i:S . p F[i]

end

where a few more keywords have been introduced. setf refers to an index type σ, propf

refers to a proposition c, and CONJ is the ASCII notation used in place of
∧

. Instead of

writing the index range as a subscript of
∧

, it is written after the CONJ. At parse time, this

entire statement is converted to

CONJ i:{‘A’, ‘B’, ‘C’} . (fni j . x[j] + 1 <= y[j])[i]

which is in the form a proposition c as allowed in the core theory (modulo conversion between

ASCII and LATEX symbols).

The general form of an abbreviation that can be written in between the let and in is

s x = a

APPENDIX C. CONCRETE SYNTAX 202

where s stands for a category name (so far we have introduced expr, setf, and propf), x is

any alphanumeric symbol, and a is the item the name is being defined for. A few additional

features are useful in some cases.

It would be convenient to use the keyword set instead of setf. However, it would

be misleading to allow set to refer to any σ because some σ are not sets. Somehow the

keyword set should refer only to those σ that are of kind IndexSet. We do this be treating

the statement set X = sigma as a synonym for setf X = sigma : IndexSet. Similarly,

prop p X = c is a synonym for propf p X = c : Prop. The keywords set and prop are

specializations of the general keywords setf and propf, respectively.

An important convenience for function notation is the ability to pass what appear to

be multiple arguments, even though formally functions accept only a single argument. For

example, λi � (x[i.1] + x[i.2]) effectively takes in two arguments. In the concrete syntax, this

would be written

fni i . (x[#1 i] + x[#2 i])

It would be even more convenient to write

fni (j, k) . (x[j] + x[k]

We allow this by treating it as

fni i . let

j = #1 i

k = #2 i

in

x[i] + x[j]

end

In other words, multiple arguments are a shorthand for declaring abbreviations with a let

construct.

The general idea is to allow a pattern in place of the single variable as the argument to

a function. The syntax for a pattern is

π ::= x | | (π1, . . . , πm) (C.1)

A pattern can either be a single variable, an underscore, or a list of patterns. An underscore

is useful because a function accepting a tuple might not need all components of that tuple.

For example,

fni (j,) . (x[j] * y[j])

is a function that uses only its first argument. The second argument could have been named

and not used, but an underscore is more clear.

Finally, the following tables summarize the correspondence between the notation used

in the theory, and that admitted in the concrete syntax. Only the label version of case

constructs are shown; case constructs with integer handles are analogous.

APPENDIX C. CONCRETE SYNTAX 203

Index Expressions

LATEX ASCII

x x

l ’l’

k k

(ε1, . . . , εm) (epsilon1, ..., epsilonm)

ε.k #k epsilon

−ε -epsilon

ε1 + ε2 epsilon1 + epsilon2

ε1 − ε2 epsilon1 - epsilon2

ε1 ∗ ε2 epsilon1 * epsilon2

case ε of {lj ⇒ εj}
m
j=1

case epsilon of

’l1’ epsilon1

| ...

| ’lm’ epsilonm

Index Types

LATEX ASCII

{l1, . . . , lm} {’l1’, ..., ’lm’}

[εL, εU] {epsilonL, ..., epsilonU}

x1 : σ1 × · · · × xm : σm (x1:sigma1 * ... * xm:sigmam)

case ε of {lj ⇒ σj}
m
j=1

case epsilon of

’l1’ sigma1

| ...

| ’lm’ sigmam

i : σ1 → σ2 i:[sigma1] -> sigma2

λi � σ fni i sigma

σ ε sigma[epsilon]

σ :: κ sigma:kappa

Index Kinds

LATEX ASCII

IndexSet set

i : σ → κ i:[sigma] -> kappa

APPENDIX C. CONCRETE SYNTAX 204

Expressions

LATEX ASCII

x x

r r

true true

false false

−e ~e

e1 + e2 e1 + e2

e1 − e2 e1 - e2

e1 ∗ e2 e1 * e2

not e not e

e1 or e2 e1 or e2

e1 and e2 e1 and e2

not e1 or e2 e1 implies e2
∑

i:σ e SUM i:sigma e

casei�τ ε of {lj ⇒ ej}
m
j=1

case {i.tau} epsilon of

’l1’ e1

| ...

| ’lm’ em

λi � e fni i e

e ε e[epsilon]

e : τ e:tau

Types

LATEX ASCII

real real

bool bool

i : σ → τ i:[sigma] -> tau

APPENDIX C. CONCRETE SYNTAX 205

Propositions

LATEX ASCII

T truth

F falsehood

isTrue e isTrue e

e1 = e2 e1 = e2

e1 ≤ e2 e 1 <= e 2

e1 ≤ e2 e 2 >= e 1

∨ disj

∧ conj

∃ exists
∨

i:σ

c DISJ i:sigma c

∧

i:σ

c CONJ i:sigma c

casei�ζ ε of {lj ⇒ cj}
m
j=1

case {i.zeta} epsilon of

’l1’ c1

| ...

| ’lm’ cm

λi � c fni i c

c ε c[epsilon]

c : ζ c:zeta

Propositional Types

LATEX ASCII

Prop prop

i : σ → ζ i:[sigma] -> zeta

Programs

LATEX ASCII

δx1:τ1,...,xm:τm
{e | c} var x1:tau1

...

var xm:taum

dir e subject to

c

APPENDIX C. CONCRETE SYNTAX 206

Appendix D

Data

Disjunctive Constraint in OPL

Input C++ file to OPL

1 #include <ilcplex/ilocplex.h>

2

3 main(int argc, char **argv) {

4

5 IloEnv env;

6 IloModel model(env);

7

8 IloNumVar x1(env,"x1");

9 IloNumVar x2(env,"x2");

10

11 model.add((x1 + x2 <= 900000) || (x1 + x2 >= 1000000));

12

13 IloCplex cplex(model);

14 cplex.exportModel("OPLDisj.out.lp");

15 env.end();

16 }

Output LP file generated by OPL

1 \Problem name: CPLEX solver

2

3 Minimize

4 obj:

5 Subject To

6 id10: x1 + x2 + 100000 id8 <= 1000000

7 id12: x1 + x2 + 2000000 id8 >= 1000000

8 Bounds

9 x1 Free

10 x2 Free

207

11 0 <= id8 <= 1

12 Generals

13 id8

14 End

Disjunctive Constraint in LogMIP

Input LogMIP file

1 BINARY VARIABLES y;

2 VARIABLES x1,x2;

3 VARIABLE z;

4

5 equations eq1,eq2,eq3,eq4;

6 eq1.. x1 + x2 =l= 5.0;

7 eq2.. x1 + x2 =g= 10.0;

8 eq3.. y =g= 0;

9 eq4.. z =e= x1 + x2;

10

11 x1.lo = 1.0;

12 x1.up = 100.0;

13

14 option mip=osl;

15 option limcol=0;

16 option limrow=0;

17 option optcr=0.;

18 option optca=0.;

19

20

21 $ONTEXT BEGIN LOGMIP

22 DISJUNCTION D1;

23

24 D1 IS

25 IF Y THEN

26 eq1;

27 ELSE

28 eq2;

29 ENDIF;

30

31 $OFFTEXT END LOGMIP

32

33 OPTION MIP=LOGMIPC;

34 MODEL TEST /ALL/;

35 SOLVE TEST USING MIP MINIMIZING Z;

36 display z.l, x1.l, x2.l, y.l;

APPENDIX D. DATA 208

Output GAMS file generated by LogMIP

1 *** VARIABLES DEFINITION CORRESPONDING TO THE ORIGINAL MINLP ***

2

3 BINARY Variables

4 y;

5 Variables

6 x1, x2, z;

7 VARIABLE LGM(*,*,*);

8

9

10 *** EQUATIONS independentof discrete choices ***

11

12 EQUATIONS

13 eq1, eq2,

14

15

16

17 *** EQUATIONS corresponding to disjunction terms ***

18

19 eqdis1, eqdis2,

20

21

22 *** EQUATIONS added to generate de CONVEX HULL ***

23

24

25 vdisag1, vdisag2,

26 bound1, bound2, bound3, bound4, bound5, bound6, bound7, bound8 ;

27 $inlinecom { }

28 *//* WRITING INDEPENDENT CONSTRAINTS

29 eq1 {eq3} .. + y =G= 0;

30

31 eq2 {eq4} .. - x1 - x2 + z =E= 0;

32

33 *//* WRITING DISJUNCTIONS’S CONSTRAINTS

34 eqdis1 {eq1} .. + lgm(’1’,’1’,’1’) + lgm(’1’,’1’,’2’) =L= 5.00000 * y ;

35

36 eqdis2 {eq2} .. + lgm(’1’,’2’,’1’) + lgm(’1’,’2’,’2’) =G= 10.00000 * (1-y);

37

38 vdisag1..x1 =E= + lgm(’1’,’1’,’1’)+ lgm(’1’,’2’,’1’);

39 vdisag2..x2 =E= + lgm(’1’,’1’,’2’)+ lgm(’1’,’2’,’2’);

40 bound1..lgm(’1’,’1’,’1’) =G= x1.LO * y ;

41 bound2..lgm(’1’,’1’,’1’) =L= x1.UP * y ;

42 bound3..lgm(’1’,’2’,’1’) =G= x1.LO * (1-y);

43 bound4..lgm(’1’,’2’,’1’) =L= x1.UP * (1-y);

44 bound5..lgm(’1’,’1’,’2’) =G= x2.LO * y ;

45 bound6..lgm(’1’,’1’,’2’) =L= x2.UP * y ;

46 bound7..lgm(’1’,’2’,’2’) =G= x2.LO * (1-y);

APPENDIX D. DATA 209

47 bound8..lgm(’1’,’2’,’2’) =L= x2.UP * (1-y);

48 SCALAR UPB/10000/;

49 SCALAR LOB /0.01/;

50 x1.UP = 100;

51 x1.LO = 1;

52 x2.UP = UPB;

53 x2.LO = LOB;

54 OPTION ITERLIM = 10000;

55 OPTION OPTCA = 0;

56 OPTION OPTCR = 0;

57 OPTION RESLIM = 1000.0000;

58 OPTION LIMCOL = 0;

59 OPTION LIMROW = 0;

60 OPTION MIP = CPLEX ;

61 MODEL ConvexHull /ALL/;

62

63 SOLVE ConvexHull MINIMIZING z USING MIP;

64 FILE RESULTS /C:\WINDOWS\gamsdir\225a\PUTfile.scr/;

65 PUT RESULTS;

66 PUT Convexhull.MODELSTAT;

67 PUT Convexhull.SOLVESTAT;

68 PUT Convexhull.ITERUSD;

69 PUT Convexhull.RESUSD;

70 PUT z.L /;

71 PUT eqdis1.L; PUT eqdis1.M /;

72 PUT eqdis2.L; PUT eqdis2.M /;

73 PUT eq1.L; PUT eq1.M /;

74 PUT eq2.L; PUT eq2.M /;

75 PUT y.L ; PUT y.M /;

76 PUT x1.L ; PUT x1.M /;

77 PUT x2.L ; PUT x2.M /;

78 PUT z.L ; PUT z.M /;

APPENDIX D. DATA 210

Data for Figures of Switched Flow Process

Figure 9.2a

i t Qα Qβ M C R S

1 0.0 on hi 20.0 0.0 0.0 0.0

1 10.0 on hi 62.0 250.0 10.0 10.0

2 10.0 off lo 62.0 250.0 0.0 0.0

2 50.0 off lo 10.0 330.0 40.0 40.0

3 50.0 on lo 10.0 380.0 0.0 40.0

3 60.0 on lo 17.0 500.0 10.0 50.0

4 60.0 off lo 17.0 500.0 0.0 50.0

4 65.4 off lo 10.0 510.8 5.4 55.4

5 65.4 off hi 10.0 550.8 5.4 0.0

5 75.0 off hi 31.2 695.0 15.0 9.6

Figure 9.2b

i t Qα Qβ M C R S

1 0.0 on hi 20.0 0.0 0.0 0.0

1 30.0 on hi 146.0 750.0 30.0 30.0

2 30.0 off lo 146.0 750.0 0.0 0.0

2 40.0 off lo 133.0 770.0 10.0 10.0

3 40.0 off lo 133.0 770.0 10.0 10.0

3 60.0 off lo 107.0 810.0 30.0 30.0

4 60.0 off hi 107.0 850.0 30.0 0.0

4 68.0 off hi 124.6 970.0 38.0 8.0

5 68.0 off lo 124.6 970.0 38.0 0.0

5 75.0 off lo 115.5 984.0 45.0 7.0

APPENDIX D. DATA 211

Figure 9.3a

i t Qα Qβ M C R S

1 0.0 off hi 20.0 0.0 0.0 0.0

1 40.0 off hi 108.0 600.0 40.0 40.0

2 40.0 off lo 108.0 600.0 40.0 0.0

2 46.38 off lo 99.7 612.7 46.4 6.4

3 46.38 off hi 99.7 652.7 46.4 0.0

3 69.2 off hi 150.0 995.6 69.2 22.9

4 69.2 off lo 150.0 995.6 69.2 0.0

4 176.9 off lo 10.0 1211.0 176.9 107.7

5 176.9 off hi 10.0 1251.0 176.9 0.0

5 216.9 off hi 98.0 1851.0 216.9 40.0

6 216.9 off lo 98.0 1851.0 216.9 0.0

6 244.6 off lo 62.0 1906.4 244.6 27.7

7 244.6 off hi 62.0 1946.4 244.6 0.0

7 284.6 off hi 150.0 2546.4 284.6 40.0

8 284.6 off lo 150.0 2546.4 284.6 0.0

8 392.3 off lo 10.0 2761.8 392.3 107.7

9 392.3 off hi 10.0 2801.8 392.3 0.0

9 432.3 off hi 98.0 3401.8 432.3 40.0

10 432.3 off lo 98.0 3401.8 432.3 0.0

10 500.0 off lo 10.0 3537.1 500.0 67.7

APPENDIX D. DATA 212

Figure 9.3b

i t Qα Qβ M C R S

1 0.0 on hi 0.0 0.0 0.0 0.0

1 30.0 on hi 180.0 750.0 30.0 30.0

2 30.0 off lo 180.0 750.0 0.0 0.0

2 34.0 off lo 182.0 758.0 4.0 4.0

3 34.0 on hi 182.0 848.0 0.0 0.0

3 64.0 on hi 362.0 1598.0 30.0 30.0

4 64.0 off lo 362.0 1598.0 0.0 0.0

4 67.0 off lo 363.5 1604.0 3.0 3.0

5 67.0 on hi 363.5 1694.0 0.0 0.0

5 97.0 on hi 543.5 2444.0 30.0 30.0

6 97.0 off lo 543.5 2444.0 0.0 0.0

6 100.0 off lo 545.0 2450.0 3.0 3.0

7 100.0 on hi 545.0 2540.0 0.0 0.0

7 130.0 on hi 725.0 3290.0 30.0 30.0

8 130.0 off hi 725.0 3290.0 0.0 30.0

8 140.0 off hi 765.0 3440.0 10.0 40.0

9 140.0 on lo 765.0 3490.0 0.0 0.0

9 170.0 on lo 840.0 3850.0 30.0 30.0

10 170.0 off hi 840.0 3890.0 0.0 0.0

10 210.0 off hi 1000.0 4490.0 40.0 40.0

APPENDIX D. DATA 213

Notation

Chapter 2

N the set{1, . . . , n} where n is a known finite constant

tsi time at start of interval i

tei time at end of interval i

∆ti length of timeline interval i

T set of timeline intervals

(i, t) an integer-real time point

T set of time points, i.e. a timeline

� total order relation on T

Qa set of finite domain constants for automaton a

Q set of finite domain variables

X set of real-valued variables

t set of timeline variables

Q (i) set of each variable in Q applied to i

X (i, t) set of each variable in X applied to (i, t)

L (Q (i)) set of finite domain constraints involving any of the

variables in Q applied to i

L (X) set of (in)equations involving any of the variables

in X applied to (i, t)

L (t) set of (in)equations on timeline variables

(n,Gt,X, Aut,GV) LCCA model

n number of intervals in timeline

Gt constraints on timeline variables

Aut set of component automata

GV constraints involving Q and X

(Q, x̄, x̂, F,Arc) component automata

x̄ set of given rates

x̂ set of jump variables

F (q) invariant for mode q

Arc set of transitions

γ(q,q′) guard on transition from q to q′

ρ(q,q′) reset on transition from q to q′

χ (i, t) point in the state space

214

[χ (i, tsi) −→ χ (i, tei)] continuous trajectory

〈χ (i, t) 7→ χ (i + 1, t)〉 discrete step

ξ hybrid trajectory

Ξ(n,Gt,X,Aut,GV) set of hybrid trajectories for model (n,Gt,X, Aut,GV)

Chapter 3

Xs (i) value of variable X at start of interval i

Xe (i) value of variable X at end of interval i

w̄ (i) variable equal to x̄ (Q (i))

Y (q, i) Boolean variable corresponding to Q (i) = q

Y Y a (i) true if automata a makes dummy transition at event i

Y Y Y (i) true if all automata make dummy transition at event i

Za (q, q′, i) true if automaton a transitions from q

in interval i to q′ in interval i + 1

Chapter 4

τ type

ρ refined type

e expression

c proposition

p mathematical program

Γ context of mathematical programming variables

Υ refined context, list of variables with declared refined types

FV (s) free variables of s, where s is e, c, or p

s closed s has no free variables, where s is e, c, or p

{e/x} s′ substitution of e for x in s′, where s′ is e, c, or p

τ type τ is a well-formed type

Γ ctxt Γ is a well-formed context

Γ ` e : τ in context Γ, e is of type τ

Γ ` c prop in context Γ, c is a well-formed proposition

p mp p is a well-formed mathematical program

ρ ⊆ τ refined type ρ is a subset of type τ

x : ρ w c the declaration x : ρ corresponds to the proposition c

Γ (Υ) context corresponding to refined context Υ

ρ bounded refined type ρ is bounded

e canonical e is an irreducible expression

v a canonical expression

e ↘ v e evaluates to v

c true proposition c is true

roption an optional real number

p� roption the solution to program p is roption

215

Ψ valuation, list of variables with assigned values

Ψ ` e ↘ v under valuation Ψ, e evaluates to v

Ψ ` c true under valuation Ψ, c is true

Chapter 5

smip s is a MIP construct,

where s is any of τ , ρ, e, c, p, Υ, Ψ, or v

e linear expression e can be transformed into a linear expression

c linear expressions within proposition c can be transformed

to linear expressions

p linear expressions within program p can be transformed

to linear expressions

p milp p is a mixed-integer linear program

e literal e is a literal expression

e dlf e is in disjunctive literal form

e cnf e is in conjunctive normal form

e conj e is in CNF but not in DLF

e1 y e2 e1 can be converted to the CNF expression e2

e1 y∗ e non-CNF expression e1 can be converted to the

CNF expression e2

Υ ` c DisjVarsBounded Υ contains bounds for all variables free in or existentially

introduced within any of the disjuncts in c

c ExistVarsBounded all variables existentially introduced within c are bounded

p DisjVarsBounded all variables in all disjunctions in program p

have known bounds

τ
type
7−→ τmip type compiler

ρ
rtype
7−→ ρmip refined type compiler

e
dlf
7−→ emip DLF expression compiler

e
conj
7−→ cmip CONJ expression compiler

Υ ` c
prop
7−→ cmip proposition compiler

Υ ` c(c′ add bounding propositions to c for all variables free in c

e~ e1 ↪→ e2 multiply e to constant terms in e1

e~ c1 ↪→ c2 multiply e to constant terms in c1

Υ ` c
disj
7−→ cmip disjunctive proposition compiler

p
prog
7−→ pmip program compiler

Υ
ctxt
7−→ Υmip refined context compiler

Ψ
val
7−→ Ψmip valuation compiler

Chapter 6

ε index expression

σ index types

216

κ index kinds

∆ context of index variables

FV (s) free variables of s, where s is ε, σ, or κ

s closed s has no free variables, where s is ε, σ, or κ

{ε/x} s substitution of ε for x in s, where s is ε, σ, κ, or ∆

s canonical s is irreducible, where s is ε, σ, or κ

η canonical index expression

s1 ↘ s2 s1 evaluatess to s2, where s is ε, σ, or κ

Φ index valuation, list of index variables with assigned values

Φ ` s1 ↘ s2 under valuation Φ, s1 evaluates to s2, where s is ε, σ, or κ

`c κ kind κ is a well-formed canonical kind

`c σ :: κ σ is a canonical type of canonical kind κ

`c ε : σ ε is a canonical element of canonical type σ

`c σ1 ≤: σ2 canonical type σ1 is a subtype of canonical type σ2

`c σ1 ≡ σ2 :: κ canonical type σ1 is equivalent to canonical type σ2

`c κ1 ≤:: κ2 κ1 is a subkind of κ2

`c κ1 ≡ κ2 kinds κ1 and κ1 are equivalent

`c ε1 ≤ ε2 ε1 is less than or equal to ε2

`c ε1 ≡ ε2 : σ expressions ε1 and ε2 are equivalent at type σ

`q J corresponding judgement on closed forms

∆ ` J corresonding judgement on open forms

Sq (σ) set of canonical elements of closed type σ

Sc (σ) set of canonical elements of canonical type σ

Chapter 7

τ indexed type

ρ indexed refined type

e indexed expression

c indexed proposition

ζ indexed propositional type

p indexed mathematical program

Γ context of mathematical programming variables

Υ refined context, list of variables with declared refined types

s closed s has no free variables, where s is any syntactic construct

{s/x} s′ substitution of s for x in s′, where s and s′ are any

syntactic constructs

`∆ τ type τ is a well-formed type

`∆ Γ ctxt Γ is a well-formed context

`∆ τ1 ≡ τ2 types τ1 and τ1 are equivalent

Γ `∆ e : τ e is of type τ

Γ `∆ e ↓ τ type analysis

Γ `∆ e ↑ τ type synthesis

217

`∆ ζ prop type propositional type ζ is well-formed

Γ `∆ c : ζ c is of propositional type ζ

p mp p is a well-formed indexed mathematical program

ρ ⊆ τ refined type ρ is a subset of type τ

x : ρ w c the declaration x : ρ corresponds to the proposition c

Γ (Υ) context corresponding to refined context Υ

ρ bounded refined type ρ is bounded

e canonical e is an irreducible expression

v a canonical expression

e ↘ v e evaluates to v

c canonical c is a canonical proposition

c1 ↘ c2 c1 evaluates to c2

c true proposition c is true

roption an optional real number

p� roption the solution to program p is roption

Ψ valuation, list of variables with assigned values

Ψ `Φ e ↘ v under valuation Ψ and Φ, e evaluates to v

Ψ `Φ c true under valuation Ψ and Φ, c is true

Chapter 8

eanf e is in application normal form

e1 hr e2 one-step head reduction

e1 6 hr e1 does not head reduce

e1 e2 convert e1 into application normal form e2

smip s is a MIP construct,

where s is any of τ , ρ, e, c, ζ, p, Υ, Ψ, or v

e linear expression e can be transformed into a linear expression

c linear expressions within proposition c can be transformed

to linear expressions

p linear expressions within program p can be transformed

to linear expressions

e literal e is a literal expression

e dlf e is in disjunctive literal form

e cnf e is in conjunctive normal form

e conj′ e is in CNF but not in DLF

e conj e is in CNF but not in DLF

e1 y e2 e1 can be converted to the CNF expression e2

e1 y∗ e non-CNF expression e1 can be converted to the

CNF expression e2

not e
not
y∗ e′ CNF of not expressions

(e1 or e2)
or

y∗ e′ CNF of or expressions

(e1 or e2)
or−conj

y∗ e′ CNF of e1 or e2, where e1 conj

218

Υ ` c DisjVarsBounded Υ contains bounds for all variables free in or existentially

introduced within any of the disjuncts in c

c ExistVarsBounded all variables existentially introduced within c are bounded

p DisjVarsBounded all variables in all disjunctions in program p

have known bounds

τ
type
7−→ τmip type compiler

ρ
rtype
7−→ ρmip refined type compiler

e
dlf
7−→ emip DLF expression compiler

e
conj
7−→ cmip CONJ expression compiler

Υ ` c
prop
7−→ cmip proposition compiler

Υ ` c(c′ add bounding propositions to c for all variables free in c

e~ e1 ↪→ e2 multiply e to constant terms in e1

e~ c1 ↪→ c2 multiply e to constant terms in c1

x : ρmip V x′
i:σ # c relate original variables x and disaggregated

variables x′ in c

Υ ` c
disj
7−→ cmip disjunctive proposition compiler

p
prog
7−→ pmip program compiler

Υ
ctxt
7−→ Υmip refined context compiler

Ψ
val
7−→ Ψmip valuation compiler

Appendix B

c syntactic category

v variable

t term

o term producing operator

p list of arguments to term producing operator

θ type of p

v = v′ variable equality

v n c variable v is of syntactic category c

θ1 ≡ θ2 θ1 and θ2 are equivalent

p : θ p is of type θ

t n c term t is well-formed and of syntactic category c

FV (c, t) free c variables of term t

FV# (c, p) free c variables of p

{t/v} t′ substitution of t for v in t′

{t/v}# p substitution of t for v in p

(t1, t2)�
c (t′1, t

′
2) α-match the c variables of t1 and t2

(p1, p2)�
c
(p′1, p

′
2) α-match the c variables of p1 and p2

219

Acronyms

LCCA linear coupled component automata

CP constraint program(ming)

DAE differential-algebraic equation

STN state-task network

CNF conjunctive normal form

DLF disjunctive literal form

DNF disjunctive normal form

IH inductive hypothesis

MP mathematical program(ming)

LP linear program(ming)

MIP mixed-integer program(ming)

MILP mixed-integer linear program(ming)

MINLP mixed-integer nonlinear program(ming)

DP disjunctive program(ming)

GDP generalized disjunctive program(ming)

HA hybrid automata

ANF application normal form

220

Bibliography

Abdeddaim, Y. and Maler, O. (2001). Job-shop scheduling using timed automata, in

G. Berry, H. Comon and A. Finkel (eds), Proceedings of the13th International Conference

on Computer Aided Verification, CAV 2001., Vol. 2102 of Lecture Notes in Computer

Science, Springer-Verlag, Berlin, Germany, pp. 478–492. 7

Abdeddaim, Y. and Maler, O. (2002). Preemptive job-shop scheduling using stopwatch

automata, Tools and Algorithms for the Construction and Analysis of Systems. 8th Inter-

national Conference, TACAS 2002. Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2002, Vol. 2280 of Lecture Notes in Computer

Science, Springer-Verlag, Grenoble, France, pp. 113–126. 7

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P. H., Nicollin, X., Oliv-

ero, A., Sifakis, J. and Yovine, S. (1995). The algorithmic analysis of hybrid systems,

Theoretical Computer Science 138(1): 3–4. 6, 7, 21

Alur, R. and Dill, D. L. (1994). A theory of timed automata, Theoretical Computer Science

126(2): 183–235. 6

Andrews, P. B. (2002). An introduction to mathematical logic and type theory: to truth

through proof, Vol. 27 of Applied logic series, 2nd edn, Kluwer Academic Publishers. 15,

48, 201

Aron, I., Hooker, J. N. and Yunes, T. H. (2004). SIMPL: A system for integrating optimiza-

tion techniques, Integration of AI and OR Techniques in Constraint Programming for

Combinatorial Optimization Problems, Vol. 3011 of Lecture Notes in Computer Science,

SPRINGER-VERLAG BERLIN, Berlin, pp. 21–36. 176

Asarin, E. and Maler, O. (1999). Optimal control for timed automata, in H. F. Chen, D. Z.

Cheng and J. F. Zhang (eds), 14th World Congress of the International Federation of

Automatic Control, Vol. 6, Elsevier Science, Beijing, China, pp. 1–6. 7

Asarin, E., Maler, O. and Pnueli, A. (1995). Reachability analysis of dynamical systems

having piecewise-constant derivatives, Theoretical Computer Science 138(1): 35–65. 7

Aubin, J. P., Lygeros, J., Quincampoix, M., Sastry, S. and Seube, N. (2002). Impulse

differential inclusions: A viability approach to hybrid systems, IEEE Transactions on

Automatic Control 47(1): 2–20. 21

221

BIBLIOGRAPHY

Avraam, M. P., Shah, N. and Pantelides, C. C. (1998). Modelling and optimisation of gen-

eral hybrid systems in the continuous time domain, Computers & Chemical Engineering

22: S221–S228. 34

Balas, E. (1974). Disjunctive programming: Properties of the convex hull of feasible points,

Technical Report MSRR 348, Carnegie Mellon University. Published version available as

Balas (1998). 4, 185, 186, 187, 188, 189, 190, 222

Balas, E. (1979). Disjunctive programming, Annals of Discrete Mathematics 5: 3–51. 190

Balas, E. (1985). Disjunctive programming and a hierarchy of relaxations for discrete op-

timization problems, Siam Journal on Algebraic and Discrete Methods 6(3): 466–486.

4

Balas, E. (1998). Disjunctive programming: Properties of the convex hull of feasible points,

Discrete Applied Mathematics 89(1-3): 3–44. Published version of Balas (1974). See also

the foreword by Cornuéjols and Pulleyblank (1998). 222, 223

Barendregt, H. P. (1984). The lambda calculus: its syntax and semantics, Vol. 103 of Studies

in logic and the foundations of mathematics, rev. edn, Sole distributors for the U.S.A. and

Canada, Elsevier Science Pub. Co. 17, 127

Barton, P. I. (1992). The modelling and simulation of combined discrete/continuous pro-

cesses, PhD thesis, Imperial College. 7

Barton, P. I. and Pantelides, C. C. (1994). Modeling of combined discrete-continuous pro-

cesses, AIChE Journal 40(6): 966–979. 6

Bemporad, A. and Morari, M. (1999). Control of systems integrating logic, dynamics, and

constraints, Automatica 35(3): 407–427. 6, 188

Bisschop, J. and Meeraus, A. (1979). Selected aspects of a general algebraic modeling

language, in K. Iracki, K. Malanowski and S. Walukiewicz (eds), 9th IFIP Conference on

Optimization Techniques: Part 2, Vol. 23 of Lecture Notes in Control and Information

Sciences, Springer-Verlag, Warsaw, pp. 223–233. 12

Bisschop, J. and Meeraus, A. (1982). On the development of a general algebraic mod-

eling system in a strategic-planning environment, Mathematical Programming Study

20(Oct): 1–29. 11

Bixby, R. (2002). Solving real-world linear programs: a decade and more of progress,

Operations Research 50(1): 3–15. 7

Brooke, A., Kendrick, D., Meeraus, A. and Raman, R. (1998). GAMS: A User’s Guide,

GAMS Development Corporation, Washington, D.C. 12

Brouwer, L. E. J. (1907). Over de Grondslagen der Wiskunde, PhD thesis, University of

Amsterdam. 16

222

BIBLIOGRAPHY

Cassez, F. and Larsen, K. (2000). The impressive power of stopwatches, in C. Palamidessi

(ed.), Proceedings of the 11th International Conference on Concurrency Theory, CON-

CUR 2000., Vol. 1877 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,

Germany, pp. 138–152. 6

Chang, C.-L. and Lee, R. C.-T. (1987). Symbolic logic and mechanical theorem proving,

Computer science classics, Academic Press, San Diego. 71, 189

Chutinan, A. and Krogh, B. H. (2003). Computational techniques for hybrid system verifi-

cation, IEEE Transactions on Automatic Control 48(1): 64–75. 7

Colombani, Y. and Heipcke, T. (2002). Mosel: an extensible environment for modeling and

programming solutions, in N. Jussien and F. Laburthe (eds), 4th International Workshop

on Integration of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems (CP-AI-OR’02), Le Croisic, France, pp. 277–290. 11, 17

Cornuéjols, G. and Pulleyblank, W. R. (1998). Foreword to Balas (1998), Discrete Applied

Mathematics 89(1–3): 1–2. 222

Curry, H. B. (1963). Foundations of mathematical logic, McGraw-Hill series in higher math-

ematics, McGraw-Hill. 14

DeCarlo, R. A., Branicky, M. S., Pettersson, S. and Lennartson, B. (2000). Perspectives

and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE

88(7): 1069–1082. 7

Dummett, M. A. E. (1977). Elements of intuitionism, Oxford logic guides, Clarendon Press,

Oxford. With the assistance of Roberto Minio. 16

Fourer, R. and Gay, D. M. (2002). Extending an algebraic modeling language to support

constraint programming, Informs Journal on Computing 14(4): 322–344. 12

Fourer, R., Gay, D. M. and Kernighan, B. W. (1990). A modeling language for mathematical

programming, Management Science 36(5): 519–554. 11

Fourer, R., Gay, D. M. and Kernighan, B. W. (2003). AMPL: a modeling language for

mathematical programming, 2nd edn, Thomson/Brooks/Cole, Pacific Grove, CA. 12

Frege, F. L. G. (1893). Grundgesetze der Arithmetik, Band I, Verlag Herman Pohle, Jena.

Partial translation available as Frege (1964). 15, 223

Frege, F. L. G. (1903). Grundgesetze der Arithmetik, Band II, Verlag Herman Pohle, Jena.

Translation of epilogue available in Frege (1964). 223

Frege, F. L. G. (1964). The basic laws of arithmetic: Exposition of the system, University of

California Press, Berkeley. Translation of the introductory portions of Frege (1893) and

an epilogue appended to Frege (1903). 223

Harper, R., Milner, R. and Tofte, M. (1989). The definition of Standard ML: Version 3,

LFCS report series, Laboratory for Foundations of Computer Science, Dept. of Computer

Science, University of Edinburgh, Edinburgh, Scotland. 14, 17

223

BIBLIOGRAPHY

Harper, R. W. (2005). Programming languages: Theory and practice. Unpublished text.

Available online at http://www-2.cs.cmu.edu/∼rwh. 17, 192

Heemels, W. P. M. H., De Schutter, B. and Bemporad, A. (2001). On the equivalence of

classes of hybrid dynamical models, Proceedings of the 40th IEEE Conference on Decision

and Control, Vol. 1, IEEE, Orlando, FL, USA, pp. 364–369. 8

Henzinger, T. A. (1996). The theory of hybrid automata, Proceedings of the 11th Annual

IEEE Symposium on Logic in Computer Science, IEEE Comput. Soc. Press, pp. 278–292.

7

Hooker, J. (2000). Logic-based methods for optimization: combining optimization and con-

straint satisfaction, Wiley-Interscience series in discrete mathematics and optimization,

John Wiley & Sons. 185, 188

Hooker, J. N. and Osorio, M. A. (1999). Mixed logical-linear programming, Discrete Applied

Mathematics 97: 395–442. 4

Ierapetritou, M. G. and Floudas, C. A. (1998). Effective continuous-time formulation for

short-term scheduling. 1. multipurpose batch processes, Industrial & Engineering Chem-

istry Research 37(11): 4341–4359. 5

Jaffar, J. and Lassez, J.-L. (1987). Constraint logic programming, Fourteenth Annual ACM

Symposium on Principles of Programming Languages, Conference Record of the Four-

teenth Annual ACM Symposium on Principles of Programming Languages, ACM, Mu-

nich, West Germany, pp. 111–119. 15

Johnson, S. C. (1979). Yacc: yet another compiler-compiler, UNIX Programmer’s Manual,

Vol. 2, Holt, Rinehart, and Winston, New York, NY, USA, pp. 353–387. 201

Kallrath, J. (2000). Mixed integer optimization in the chemical process industry - experience,

potential and future perspectives, Chemical Engineering Research & Design 78(A6): 809–

822. 5

Kallrath, J. (2004). Modeling languages in mathematical optimization, Vol. 88 of Applied

optimization, Kluwer Academic Publishers, Boston. 11

Kondili, E., Pantelides, C. C. and Sargent, R. W. H. (1993). A general algorithm for

short-term scheduling of batch operations. I. MILP formulation, Computers & Chemical

Engineering 17(2): 211–227. 5

Krogh, B. H. (2000). Hybrid systems: State of the art and perspectives, 18th Brazilian

Congress of Automatic Control, Florianopolis, SC, Brazil. 7

Lee, C. K., Singer, A. B. and Barton, P. I. (2004). Global optimization of linear hybrid

systems with explicit transitions, Systems & Control Letters 51(5): 363–375. 8

Lesk, M. E. and Schmidt, E. (1978). Lex: a lexical analyzer generator, UNIX Programmer’s

Manual, 7 edn, Bell Labs, Murray Hill, N.J. 201

224

BIBLIOGRAPHY

Levine, J. R., Mason, T. and Brown, D. (1995). Lex & yacc, A Nutshell handbook;, 2nd

minor corrections edn, O’Reilly & Associates, Sebastopol, CA. 201

Lygeros, J., Pappas, G. J. and Sastry, S. (1999). An introduction to hybrid system model-

ing, analysis, and control, Preprints of the First Nonlinear Control Network Pedagogical

School, Athens, Greece, pp. 307–329. 21

Maravelias, C. T. and Grossmann, I. E. (2003). New general continuous-time state-task

network formulation for short-term scheduling of multipurpose batch plants, Industrial &

Engineering Chemistry Research 42(13): 3056–3074. 5

Martin-Löf, P. (1984). Intuitionistic type theory, Vol. 1 of Studies in proof theory. Lecture

notes; Variation: Studies in proof theory, Bibliopolis, Napoli. Notes by Giovanni Sambin

of a series of lectures given in Padua, June 1980. 16, 84

Martin-Löf, P. (1987). Truth of a proposition, evidence of a judgment, validity of a proof,

Synthese 73(3): 407–420. 60

Martin-Löf, P. (1996). On the meanings of the logical constants and the justifications of the

logical laws, Nordic Journal of Philosophical Logic 1(1): 11–60. 60

Mitra, G., Lucas, C., Moody, S. and Hadjiconstantinou, E. (1994). Tools for reformulating

logical forms into zero-one mixed integer programs, European Journal of Operational

Research 72(2): 262–276. 188

Nemhauser, G. L. and Wolsey, L. A. (1999). Integer and combinatorial optimization, Wiley-

Interscience series in discrete mathematics and optimization, Wiley, New York. 4, 9,

70

Nicollin, X., Olivero, A., Sifakis, J. and Yovine, S. (1991). An approach to the description

and analysis of hybrid systems, in R. L. Grossman, A. Nerode, A. P. Ravn and H. Rischel

(eds), Hybrid Systems Conference, Springer-Verlag, Lyngby, Denmark, pp. 149–178. 7

Pierce, B. C. (2002). Types and programming languages, MIT Press, Cambridge, Mass. 12,

17

Raghunathan, A. U. and Biegler, L. T. (2003). Mathematical programs with equilib-

rium constraints (MPECs) in process engineering, Computers & Chemical Engineering

27(10): 1381–1392. 7

Raman, R. and Grossmann, I. E. (1994). Modelling and computational techniques for logic

based integer programming, Computers & Chemical Engineering 18(7): 563–578. 4, 9,

35, 38, 189, 190

Russell, B. (1903). The principles of mathematics, University Press, Cambridge. The mate-

rial on the subject originally intended to form the 2d volume was later developed into an

independent work: Principia Mathematica, by A. N. Whitehead and B. Russell, published

in 3 vols., Cambridge, 1910-13. 15

225

BIBLIOGRAPHY

Saraswat, V. A. (1989). Concurrent Constraint Programming Languages, PhD thesis,

Carnegie Mellon University. 15

Sasao, T. (1999). Switching theory for logic synthesis, Kluwer Academic Publishers, Boston,

Mass. 188

Stursberg, O., Panek, S., Till, J. and Engell, S. (2002). Generation of optimal control policies

for systems with switched hybrid dynamics, Modelling, Analysis, and Design of Hybrid

Systems, Vol. 279 of Lecture Notes in Control and Information Sciences, Springer-Verlag,

Berlin, pp. 337–352. 7

Torrisi, F. D., Bemporad, A. and Mignone, D. (2000). Hysdel — a tool for generating hybrid

models, Technical Report AUT00-03, Automatic Control Lab, ETH. 8

Troelstra, A. S. and van Dalen, D. (1988). Constructivism in mathematics: an introduction,

Vol. 1 of Studies in logic and the foundations of mathematics v. 121, Sole distributors

for the U.S.A. and Canada, Elsevier Science Pub. Co., Amsterdam, North-Holland; New

York, N.Y. 16

van Hentenryck, P. and Lustig, I. (1999). The OPL optimization programming language,

MIT Press, Cambridge, Mass. With contributions by Irvin Lustig, Laurent Michel, and

Jean-Francois Puget. 12

Vecchietti, A. and Grossmann, I. E. (2000). Modeling issues and implementation of language

for disjunctive programming, Computers & Chemical Engineering 24(9–10): 2143–2155.

13

Visser, E. (2001). A survey of rewriting strategies in program transformation systems, 1st

International Workshop on Reduction Strategies in Rewriting and Programming (WRS

2001), Vol. 57 of Electronic Notes in Theoretical Computer Science, Elsevier, Utrecht,

Netherlands. 71, 189

Westerberg, A. W., Hutchison, H. P., Motard, R. L. and Winter, P. (1979). Process flow-

sheeting, Cambridge University Press. 5

Whitehead, A. N. and Russell, B. (1910). Principia Mathematica, Vol. 1, University Press,

Cambridge. 15

226

	Abstract
	Acknowledgments
	Brief Contents
	Detailed Contents
	List of Figures
	Introduction
	Modeling Challenges
	Chemical Process Systems
	Hybrid Systems
	Mathematical Programs
	Previous Definitions of Mathematical Programs
	Previous Mathematical Programming Languages

	Type Theory
	Programming Languages
	Dissertation Overview

	Modeling Hybrid Systems
	Preliminaries
	Hybrid Timeline
	Constraints

	Linear Coupled Component Automata
	Hybrid Trajectories
	Results

	Optimizing Hybrid Systems
	Optimization Problems
	Constraint Conversions
	Eliminating Infinite Quantifiers
	Eliminating Variable Arguments
	Converting Finite Domains to Booleans

	Symmetry Breaking
	Model Transformation
	Conclusions
	Appendix Proof of Theorem 3.1

	Logical Formulation of Mathematical Programs
	Mathematical Preliminaries
	Induction
	Types

	Syntax
	Full Forms
	Types
	Expressions
	Propositions
	Programs

	Free Variables
	Free Variables of Expression
	Free Variables of Proposition
	Free Variables of Program

	Substitution
	Substitution into Expression
	Substitution into Proposition

	Type System
	Well-Formed Type
	Well-Formed Context
	Type of Expression
	Well-Formed Proposition
	Well-Formed Program

	Refined Types
	Semantics
	Evaluation of Expression
	Truth of Proposition
	Solution of Mathematical Program
	Open Forms

	Results

	Compiling Mathematical Programs
	Sub-Languages
	Mixed-Integer Programs
	Linearity
	Mixed-Integer Linear Programs

	Conjunctive Normal Form
	Definition of CNF
	Transforming to CNF

	Compiling MP to MIP
	Type Compiler
	Expression Compiler
	DLF Expression Compiler
	CONJ Expression Compiler

	Proposition Compiler
	Disjunctive Proposition Compiler
	Program Compiler

	Results

	Index Sets
	Syntax
	Full Forms
	Expressions
	Types
	Kinds
	Context

	Free Variables
	Free Variables of Expression
	Free Variables of Type
	Free Variables of Kind

	Substitution
	Substitution Into Expression
	Substitution Into Type
	Substitution Into Kind
	Substitution Into Context

	Canonical Forms
	Canonical Expressions
	Canonical Types
	Canonical Kinds

	Semantics
	Expression Evaluation
	Type Evaluation
	Kind Evaluation
	Meaning of Open Forms

	Type System
	Judgements on Canonical Forms
	Well-Formed Canonical Kind
	Canonical Kind of Canonical Type
	Canonical Type of Canonical Expression
	Canonical Subtyping
	Canonical Type Equivalence
	Canonical Subkinding
	Canonical Kind Equivalence
	Canonical Expression Comparison
	Canonical Expression Equivalence

	Judgements on Closed Forms
	Judgements on Full Forms

	Results

	Indexed Mathematical Programs
	Syntax
	Full Forms
	Types
	Expressions
	Propositions
	Propositional Types
	Programs

	Meta-Operations Relating to Variables

	Type System
	Well-Formed Type
	Well-Formed Context
	Type Equivalence
	Type of Expression
	Algorithmic Type of Expression
	Well-Formed Propositional Type
	Propositional Type Equivalence
	Type of Proposition
	Well-Formed Program

	Refined Types
	Semantics
	Evaluation of Expression
	Truth of Proposition
	Solution of Program
	Open Forms

	Results

	Compiling Indexed Mathematical Programs
	Application Normal Form
	Definition of ANF
	Transformation to ANF

	Sub-Languages
	Indexed Mixed-Integer Programs
	Indexed Linearity

	Indexed Conjunctive Normal Form
	Definition of Indexed CNF
	Transforming to Indexed CNF

	Compiling Indexed MP to Indexed MIP
	Type Compiler
	Expression Compiler
	DLF Expression Compiler
	CONJ Expression Compiler

	Proposition Compiler
	Disjunctive Proposition Compiler
	Program Compiler

	Results

	Application: Switched Flow Process
	LCCA Model
	MP Model
	MIP Model
	Formal MP Model
	Formal MIP Model
	Results

	Conclusions
	Summary
	Assessment
	Future Work

	Appendix Reformulating Mathematical Programs
	Simple Reformulations
	Convex Hull Reformulation
	Adding Boolean Propositions
	Conclusions

	Appendix Variable Binding Meta-Logic
	Syntax
	Judgements
	Meta-Operations
	Free Variables
	Substitution
	Alpha Conversion

	Example: Indexed Program Logic

	Appendix Concrete Syntax
	Appendix Data
	Notation
	Acronyms
	Bibliography

