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Modeling 

  Conceptual Description 
–  statements in a natural language 
–  pictures, diagrams 

  Formal Model 
–  statements in a mathematical 

language 

  Modeling is the process of translating the conceptual description of 
a physical system into mathematical statements 

  Affected by mathematical language we choose to express the 
model in 



Goals 

  Use type theory to develop more elegant modeling languages 
  Define model transformations 

–  to connect to existing algorithms 

Mathematical Programming 
- optimization 

Type Theory 
- programming languages 

Languages for 
Mathematical Programming 
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Introductory Example 

  Mathematical Program (MP) 
–  real, integer, bool 
–  conjunction and disjunction of 

(in)equations, Boolean constraints 

  Mixed-Integer Program (MIP) 
–  real, integer 
–  conjunction of (in)equations 

  Conceptual Description 
A reactor can run one of three reactions. If rxnX is run, then the temperature must 
stay below 400. If rxnZ is run, the temperature must be below 600, and the maximum 
temperature the reactor can handle is 1000. 



Outline 

  Introductory example 
  Review previous definitions of MP 

  Define MP (using type theory) 
  Convert MP to MIP 
  Language for indexing 
  Indexed MP 
  Hybrid systems modeling (quick overview) 

  Conclusions 



Matrix-Based Definition of Linear MIP   

  This defines a set of mathematical programs 
–  each particular choice of c, x, A, and b refers to an element of this set 

  Advantages 
–  compact 
–  clearly captures numerical aspects of the problem 
–  all previous results made possible by this definition 



Matrix-Based Definition of Linear MIP   

  Disadvantages 
1.  cannot actually model systems in this form 
2.  problem structure cannot be expressed 
3.  not extensible 
4.  constraints are not objects of the formal theory 
5.  does not lead to software implementation 
6.  does not specify information desired from a solution 
7.  many more … 

–  no way to state variable bounds 
–  are Z and R different types 
–  computation on the reals is not possible 

    addressed 

  not addressed 



Critique of Current Definition of MP 
1. Models cannot be posed in matrix form (in practice) 

  The matrix form does not provide a language expressive in practice 
  We would like to write


 which involves 
–  universal quantifiers 
–  index sets 
–  functions returning index sets 
–  function variables 

  Must define a mathematical system supporting these features 



Critique of Current Definition of MP 
2. Knowledge of problem structure not retained 

  Eliminating indices discards valuable knowledge 
–  indexed constraint: there are N constraints of an identical form 
–  expanded constraint: there are N unrelated constraints 

  How many constraints are there? 

–  current answer: 

–  our answer: it can be 



Critique of Current Definition of MP 
3. Not extensible 

  Matrices do not accommodate nonlinear constraints 
  There is no way to give a matrix based definition of 

–  Boolean expressions 
–  finite domain terms 
–  … 

  Thus, matrix-based definition is theoretically limiting. 



Critique of Current Definition of MP 
4. Constraints are not mathematical objects 

  If they were, it would be possible to define a function taking a 
constraint as an argument, e.g. 
    g(Ax ≤ b) 

  Actually, we define 
    g(A,b) 
 Interpretation of A and b as relating to a constraint is external to the 
theory in which g is defined. 

  Program transformations require operating on constraints 
–  convex hull 
–  big-M 

  Must define a constraint space 
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Type Theory 

  Closely related to set theory and mathematical logic 

  Has served as a foundation of mathematics during the last century 
–  Whitehead and Russell, Principia Mathematica, 1910 
–  Martin-Löf, P., Intuitionistic Type Theory, 1984 
–  Andrews, P. B., An introduction to mathematical logic and type theory: to truth 

through proof, 2002 

  Is the mathematical basis for designing programming languages 
–  Harper, R., Programming Languages: Theory and Practice, Draft 2005 
–  Harper, R., Type Systems for Programming Languages, Draft 2000 
–  Pierce, B. C., Types and Programming Languages, 2002 



  expressions 

–  invalid expressions included 

Logical Formulation of MP 

Syntax 

  types 



Logical Formulation of MP 

Type of Expression 

  Need context 

    

  Definition of judgement is given by inference rules 

Preconditions 

Conclusion 



Logical Formulation of MP 
Type of Expression (cont.) 

  Expressions have been categorized into types 
  Any expression not categorized is ill-formed 



Logical Formulation of MP 

Syntax (cont.) 

  types … 
  expressions … 
  propositions 

(constraints) 

–  Boolean conjunction/disjunction are different than propositional conjunction/
disjunction 

  programs 



Logical Formulation of MP 

Type System 

  Type of Expression 

  Well-Formed Proposition 

  Well-Formed Program 
–  p MP defines a set of mathematical programs 



Software Example 

Input Program 
var x:real 

var y:real 

min x subject_to 

(isTrue y, x <= 3.0) disj (isTrue (not y), x >= 4.0) 

          p 

Input Program 

          p 



Software Example (cont.) 

Input Program 
var x:real 

var y:real 

min x subject_to 

(isTrue y, x <= 3.0) disj (isTrue (not y), x >= 4.0) 

Output Messages 
ERROR: type analysis failed 

  context: x:real, y:real 

  expr at 5.9: y 

  type: bool 

MSG: ill-formed prop, previous messages should explain why 

  context: x:real, y:real 

  prop at 5.2-5.9: isTrue y 

          p 



Logical Formulation of MP 

Semantics 

  Thus far, we have defined the syntax of MP 
  But we do not know what the syntax means 
  Need to 

1.  Define how to evaluate an expression 
e.g. must state that 2.0 + 3.1 is equal to 5.1 

2.  State what it means for a proposition to be true 
e.g. must state that a c1 ∨ c2 is true if c1 is true or if c2 is true


3.  Explain what the solution to a mathematical program is 

  Our definition of the semantics elucidates the information desired 
from an algorithm 
–  we want not just the solution but a proof explaining why the given solution is in 

fact the solution 
–  it appears that current practice follows a mixture of the classical and constructive 

traditions of proof 
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Compiling MP to MIP 

Mixed-Integer Programming Sub-Language 

  Types 

  Expressions 

  Propositions 

  Programs 



Compiling MP to MIP 

Overview of Compiler 

  Type Compiler 

  Expression Compiler 

  Proposition Compiler 

  Program Compiler 

  Precondition 

Balas (1974) 

Raman and Grossmann (1994) 



Compiling MP to MIP 

Disjunctive Constraint Compiler 



Compiling MP to MIP 
Example 

Input File (MP) 
var x:real 

var w:real 

min x + w subject_to 

(x <= w) disj (x >= w + 4.0) 

Output 
ERROR: variable in disjunct must be 

bounded 
  variable at 5.7: w 
  is of unbounded type at 2.7-2.10: 

real 

ERROR: variable in disjunct must be 
bounded 

  variable at 5.2: x 
  is of unbounded type at 1.7-1.10: 

real 



Compiling MP to MIP 
Example 

Input File (MP) 
var x:<10.0, 100.0> 

var w:<2.0, 50.0> 

min x + w subject_to 

(x <= w) disj (x >= w + 4.0) 

Output 
var x:<10.0, 100.0> 
var w:<2.0, 50.0> 

min x + w subject_to 

exists y1:[0, 1] 
exists y2:[0, 1] 
exists x1:<10.0, 100.0> 
exists x2:<10.0, 100.0> 
exists w1:<2.0, 50.0> 
exists w2:<2.0, 50.0> 
  w = w1 + w2, 
  x = x1 + x2, 
  y1 + y2 = 1, 

  10.0 * y1 <= x1,  
  x1 <= 100.0 * y1,  
  2.0 * y1 <= w1,  
  w1 <= 50.0 * y1,  
  x1 <= w1, 

  10.0 * y2 <= x2,  
  x2 <= 100.0 * y2,  
  2.0 * y2 <= w2,  
  w2 <= 50.0 * y2,  
  x2 >= w2 + 4.0 * y2 
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Indexing 
Syntax: Expressions 

  Expressions 

  Example: a one dimensional table 

–  if i takes the value ‘A’, then the whole expression is equal to 4 



Indexing 
Syntax: Types 

  Integer interval [εL, εU] is a dependent type 
–  unlike real and bool, its elements depend on the values of variables 

  x1:σ1 × … × xm:σm is a dependent product, a generalization of the 
Cartesian product 

–  ex. 



Indexing 
Syntax: Types (cont.) 

  Example. Let f be the function 

 Then 



Indexing 
Syntax: Kinds 



Indexing 
Type System 

  Main judgements 

  Example 

            this is an index set 

            this is not an index set 



Indexing 
Type System (cont.) 

  Type system is semantically defined 
–  constructs declared to exist precisely when they have meaning 

  This is easier 
  Leads to more programs being considered well-formed 
  Possible only because index types are finite 



Indexing 
Example 
let 

  set JOBS = {'a','b','c'} 

  typei RUNS_ON = fni j . case j of 

                              'a' => {'s1','s2'} 

                            | 'b' => {'s1','s3','s4'} 

                            | 'c' => {'s3','s4'} 

in 

  j:JOBS * RUNS_ON[j] 

end 

  Explicitly, above set is 
  {('a','s1'), ('a','s2'), 

   ('b','s1'), ('b','s3'), ('b','s4'), 

   ('c','s3'), ('c','s4')} 

      σ
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Indexed Mathematical Programs 
Syntax 

  Types 

  Expressions 



Indexed Mathematical Programs 
Example 

  The expression 

is of type 



Indexed Mathematical Programs 
Syntax (cont.) 

  Types … 
  Expressions … 
  Propositions 

  Propositional Types 



Indexed Mathematical Programs 
Examples 

  The proposition 

is of propositional type 

  The proposition 

is of propositional type 



Indexed Mathematical Programs 
Type System 



Compiling Indexed MP to Indexed MIP 

Overview of Compiler 

  Type Compiler 

  Refined Type Compiler 

  Expression Compiler 

  Proposition Compiler 

  Program Compiler 

  Our compilers retain indexing structure 



Indexed Mathematical Programs 
Normal Forms in Presence of Higher Types 



Switched Flow Process 
Conceptual Description 

  Two pumps – hybrid processes 
–  on/off 
–  hi/lo 

  Want to minimize cost 
–  continuous operational costs 
–  discrete switching costs 

 The figure depicts a tank being filled by two hybrid 
processes, α and β, and being emptied continuously at a 
rate of F=1.8. Initially, the material level in the tank is 
M0=20.0. The tank's maximum capacity Mmax=150.0 and 
the material level should never fall below Mmin=10.0. 
 Process α represents a pump that can be either on or 
off. When it is on, it provides material to the tank at rate 
2.0. There is also an operating cost of 10.0 per unit time 
for running the pump. Operational constraints on the 
pump forbid it from being continuously run longer than 
30.0 time units; it must be switched off before this time 
limit is reached. There are no operating costs while it is 
off, but it must not be switched on again in less than 2.0 
time units. When it is switched on again, if at all, a 
startup cost of 50.0 is incurred. 
 Process β is similar, but it represents a pump that is 
always on, either at a high or low setting. In the high 
setting, material flows to the tank at rate 4.0 and the 
operating cost is 15.0 per time unit. In the low setting, 
the material flow rate drops to 0.5, and the operating 
cost is 2.0. Once set to low, the pump cannot be 
switched to the high setting again for at least 3.0 time 
units, and, when it does, a startup cost of 40.0 is 
incurred. 
 We wish to study how the material level changes over 
time and to understand the cost of running the system 
for Tmax=500.0 time units. 



Software Usage 

p 

write a model 

check p MP 

fix model 

p 

will satisfy p MIP 

to solver 



Switched Flow Process 

Optimal Solution 
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Modeling Hybrid Systems 

Linear Coupled Component Automata 

  The switched flow process is a dynamical discrete-continuous 
system, or hybrid system 

  Can provide more features than in Indexed MP language 
  Several researchers have provided hybrid automata frameworks 

–  Cassez and Larsen (2000), Alur et al. (1995) 

  We have defined the LCCA framework 



Switched Flow Process 
LCCA Model 



Switched Flow Process 
Transform LCCA to MP 

disjunction 
over 
transitions 

disjunction 
over modes 
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Comparison of MP Languages 

1 Based on OPL Studio 3.7.1. Version 4.0 has reduced features. 
2 Including XPress-Kalis. 



Comparison of Mathematical Definitions of MP 



Conclusions 

  Formal theory of indexed mathematical programs provided 
–  programs can be written in this form 
–  problem structure retained for algorithms 

  Defined a compiler automatically generating mixed-integer programs 
–  most algorithms expect this form 
–  indexing structure is retained 

  Hybrid systems 
–  provided novel modeling framework 
–  can transform these models to MP 

  Demonstrated the value of type theory to new areas 



Directions for Future Research 

  Connect TyL to solvers 
  Enhance language with differential equations 

–  define transformation to algebraic equations 

  Define a logic for hybrid systems 
  Invent domain specific mathematical languages 

–  types 
molecule, atom, etc. 

–  expressions 
MW(m) where m : molecule, and MW : molecule  real 


