
Logical Modeling Frameworks for the
Optimization of Discrete-Continuous Systems
Ashish Agarwal
Department of Chemical Engineering, Carnegie Mellon University

Advisors:
Ignacio E. Grossmann
Department of Chemical Engineering, Carnegie Mellon University
Robert Harper
Computer Science Department, Carnegie Mellon University

PhD Defense
May 5, 2006

Modeling

  Conceptual Description
–  statements in a natural language
–  pictures, diagrams

  Formal Model
–  statements in a mathematical

language

  Modeling is the process of translating the conceptual description of
a physical system into mathematical statements

  Affected by mathematical language we choose to express the
model in

Goals

  Use type theory to develop more elegant modeling languages
  Define model transformations

–  to connect to existing algorithms

Mathematical Programming
- optimization

Type Theory
- programming languages

Languages for
Mathematical Programming

Outline

  Introductory example
  Review previous definitions of MP

  Define MP (using type theory)
  Convert MP to MIP
  Language for indexing
  Indexed MP
  Hybrid systems modeling (quick overview)

  Conclusions

Introductory Example

  Mathematical Program (MP)
–  real, integer, bool
–  conjunction and disjunction of

(in)equations, Boolean constraints

  Mixed-Integer Program (MIP)
–  real, integer
–  conjunction of (in)equations

  Conceptual Description
A reactor can run one of three reactions. If rxnX is run, then the temperature must
stay below 400. If rxnZ is run, the temperature must be below 600, and the maximum
temperature the reactor can handle is 1000.

Outline

  Introductory example
  Review previous definitions of MP

  Define MP (using type theory)
  Convert MP to MIP
  Language for indexing
  Indexed MP
  Hybrid systems modeling (quick overview)

  Conclusions

Matrix-Based Definition of Linear MIP 

  This defines a set of mathematical programs
–  each particular choice of c, x, A, and b refers to an element of this set

  Advantages
–  compact
–  clearly captures numerical aspects of the problem
–  all previous results made possible by this definition

Matrix-Based Definition of Linear MIP 

  Disadvantages
1.  cannot actually model systems in this form
2.  problem structure cannot be expressed
3.  not extensible
4.  constraints are not objects of the formal theory
5.  does not lead to software implementation
6.  does not specify information desired from a solution
7.  many more …

–  no way to state variable bounds
–  are Z and R different types
–  computation on the reals is not possible

 addressed

 not addressed

Critique of Current Definition of MP
1. Models cannot be posed in matrix form (in practice)

  The matrix form does not provide a language expressive in practice
  We would like to write

 which involves
–  universal quantifiers
–  index sets
–  functions returning index sets
–  function variables

  Must define a mathematical system supporting these features

Critique of Current Definition of MP
2. Knowledge of problem structure not retained

  Eliminating indices discards valuable knowledge
–  indexed constraint: there are N constraints of an identical form
–  expanded constraint: there are N unrelated constraints

  How many constraints are there?

–  current answer:

–  our answer: it can be

Critique of Current Definition of MP
3. Not extensible

  Matrices do not accommodate nonlinear constraints
  There is no way to give a matrix based definition of

–  Boolean expressions
–  finite domain terms
–  …

  Thus, matrix-based definition is theoretically limiting.

Critique of Current Definition of MP
4. Constraints are not mathematical objects

  If they were, it would be possible to define a function taking a
constraint as an argument, e.g.
 g(Ax ≤ b)

  Actually, we define
 g(A,b)
 Interpretation of A and b as relating to a constraint is external to the
theory in which g is defined.

  Program transformations require operating on constraints
–  convex hull
–  big-M

  Must define a constraint space

Outline

  Introductory example
  Review previous definitions of MP

  Define MP (using type theory)
  Convert MP to MIP
  Language for indexing
  Indexed MP
  Hybrid systems modeling (quick overview)

  Conclusions

Type Theory

  Closely related to set theory and mathematical logic

  Has served as a foundation of mathematics during the last century
–  Whitehead and Russell, Principia Mathematica, 1910
–  Martin-Löf, P., Intuitionistic Type Theory, 1984
–  Andrews, P. B., An introduction to mathematical logic and type theory: to truth

through proof, 2002

  Is the mathematical basis for designing programming languages
–  Harper, R., Programming Languages: Theory and Practice, Draft 2005
–  Harper, R., Type Systems for Programming Languages, Draft 2000
–  Pierce, B. C., Types and Programming Languages, 2002

  expressions

–  invalid expressions included

Logical Formulation of MP

Syntax

  types

Logical Formulation of MP

Type of Expression

  Need context

 

  Definition of judgement is given by inference rules

Preconditions

Conclusion

Logical Formulation of MP
Type of Expression (cont.)

  Expressions have been categorized into types
  Any expression not categorized is ill-formed

Logical Formulation of MP

Syntax (cont.)

  types …
  expressions …
  propositions

(constraints)

–  Boolean conjunction/disjunction are different than propositional conjunction/
disjunction

  programs

Logical Formulation of MP

Type System

  Type of Expression

  Well-Formed Proposition

  Well-Formed Program
–  p MP defines a set of mathematical programs

Software Example

Input Program
var x:real

var y:real

min x subject_to

(isTrue y, x <= 3.0) disj (isTrue (not y), x >= 4.0)

 p

Input Program

 p

Software Example (cont.)

Input Program
var x:real

var y:real

min x subject_to

(isTrue y, x <= 3.0) disj (isTrue (not y), x >= 4.0)

Output Messages
ERROR: type analysis failed

 context: x:real, y:real

 expr at 5.9: y

 type: bool

MSG: ill-formed prop, previous messages should explain why

 context: x:real, y:real

 prop at 5.2-5.9: isTrue y

 p

Logical Formulation of MP

Semantics

  Thus far, we have defined the syntax of MP
  But we do not know what the syntax means
  Need to

1.  Define how to evaluate an expression
e.g. must state that 2.0 + 3.1 is equal to 5.1

2.  State what it means for a proposition to be true
e.g. must state that a c1 ∨ c2 is true if c1 is true or if c2 is true

3.  Explain what the solution to a mathematical program is

  Our definition of the semantics elucidates the information desired
from an algorithm
–  we want not just the solution but a proof explaining why the given solution is in

fact the solution
–  it appears that current practice follows a mixture of the classical and constructive

traditions of proof

Outline

  Introductory example
  Review previous definitions of MP

  Define MP (using type theory)
  Convert MP to MIP
  Language for indexing
  Indexed MP
  Hybrid systems modeling (quick overview)

  Conclusions

Compiling MP to MIP

Mixed-Integer Programming Sub-Language

  Types

  Expressions

  Propositions

  Programs

Compiling MP to MIP

Overview of Compiler

  Type Compiler

  Expression Compiler

  Proposition Compiler

  Program Compiler

  Precondition

Balas (1974)

Raman and Grossmann (1994)

Compiling MP to MIP

Disjunctive Constraint Compiler

Compiling MP to MIP
Example

Input File (MP)
var x:real

var w:real

min x + w subject_to

(x <= w) disj (x >= w + 4.0)

Output
ERROR: variable in disjunct must be

bounded
 variable at 5.7: w
 is of unbounded type at 2.7-2.10:

real

ERROR: variable in disjunct must be
bounded

 variable at 5.2: x
 is of unbounded type at 1.7-1.10:

real

Compiling MP to MIP
Example

Input File (MP)
var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

(x <= w) disj (x >= w + 4.0)

Output
var x:<10.0, 100.0>
var w:<2.0, 50.0>

min x + w subject_to

exists y1:[0, 1]
exists y2:[0, 1]
exists x1:<10.0, 100.0>
exists x2:<10.0, 100.0>
exists w1:<2.0, 50.0>
exists w2:<2.0, 50.0>
 w = w1 + w2,
 x = x1 + x2,
 y1 + y2 = 1,

 10.0 * y1 <= x1,
 x1 <= 100.0 * y1,
 2.0 * y1 <= w1,
 w1 <= 50.0 * y1,
 x1 <= w1,

 10.0 * y2 <= x2,
 x2 <= 100.0 * y2,
 2.0 * y2 <= w2,
 w2 <= 50.0 * y2,
 x2 >= w2 + 4.0 * y2

Outline

  Introductory example
  Review previous definitions of MP

  Define MP (using type theory)
  Convert MP to MIP
  Language for indexing
  Indexed MP
  Hybrid systems modeling (quick overview)

  Conclusions

Indexing
Syntax: Expressions

  Expressions

  Example: a one dimensional table

–  if i takes the value ‘A’, then the whole expression is equal to 4

Indexing
Syntax: Types

  Integer interval [εL, εU] is a dependent type
–  unlike real and bool, its elements depend on the values of variables

  x1:σ1 × … × xm:σm is a dependent product, a generalization of the
Cartesian product

–  ex.

Indexing
Syntax: Types (cont.)

  Example. Let f be the function

 Then

Indexing
Syntax: Kinds

Indexing
Type System

  Main judgements

  Example

 this is an index set

 this is not an index set

Indexing
Type System (cont.)

  Type system is semantically defined
–  constructs declared to exist precisely when they have meaning

  This is easier
  Leads to more programs being considered well-formed
  Possible only because index types are finite

Indexing
Example
let

 set JOBS = {'a','b','c'}

 typei RUNS_ON = fni j . case j of

 'a' => {'s1','s2'}

 | 'b' => {'s1','s3','s4'}

 | 'c' => {'s3','s4'}

in

 j:JOBS * RUNS_ON[j]

end

  Explicitly, above set is
 {('a','s1'), ('a','s2'),

 ('b','s1'), ('b','s3'), ('b','s4'),

 ('c','s3'), ('c','s4')}

 σ

Outline

  Introductory example
  Review previous definitions of MP

  Define MP (using type theory)
  Convert MP to MIP
  Language for indexing
  Indexed MP
  Hybrid systems modeling (quick overview)

  Conclusions

Indexed Mathematical Programs
Syntax

  Types

  Expressions

Indexed Mathematical Programs
Example

  The expression

is of type

Indexed Mathematical Programs
Syntax (cont.)

  Types …
  Expressions …
  Propositions

  Propositional Types

Indexed Mathematical Programs
Examples

  The proposition

is of propositional type

  The proposition

is of propositional type

Indexed Mathematical Programs
Type System

Compiling Indexed MP to Indexed MIP

Overview of Compiler

  Type Compiler

  Refined Type Compiler

  Expression Compiler

  Proposition Compiler

  Program Compiler

  Our compilers retain indexing structure

Indexed Mathematical Programs
Normal Forms in Presence of Higher Types

Switched Flow Process
Conceptual Description

  Two pumps – hybrid processes
–  on/off
–  hi/lo

  Want to minimize cost
–  continuous operational costs
–  discrete switching costs

 The figure depicts a tank being filled by two hybrid
processes, α and β, and being emptied continuously at a
rate of F=1.8. Initially, the material level in the tank is
M0=20.0. The tank's maximum capacity Mmax=150.0 and
the material level should never fall below Mmin=10.0.
 Process α represents a pump that can be either on or
off. When it is on, it provides material to the tank at rate
2.0. There is also an operating cost of 10.0 per unit time
for running the pump. Operational constraints on the
pump forbid it from being continuously run longer than
30.0 time units; it must be switched off before this time
limit is reached. There are no operating costs while it is
off, but it must not be switched on again in less than 2.0
time units. When it is switched on again, if at all, a
startup cost of 50.0 is incurred.
 Process β is similar, but it represents a pump that is
always on, either at a high or low setting. In the high
setting, material flows to the tank at rate 4.0 and the
operating cost is 15.0 per time unit. In the low setting,
the material flow rate drops to 0.5, and the operating
cost is 2.0. Once set to low, the pump cannot be
switched to the high setting again for at least 3.0 time
units, and, when it does, a startup cost of 40.0 is
incurred.
 We wish to study how the material level changes over
time and to understand the cost of running the system
for Tmax=500.0 time units.

Software Usage

p

write a model

check p MP

fix model

p

will satisfy p MIP

to solver

Switched Flow Process

Optimal Solution

Outline

  Introductory example
  Review previous definitions of MP

  Define MP (using type theory)
  Convert MP to MIP
  Language for indexing
  Indexed MP
  Hybrid systems modeling (quick overview)

  Conclusions

Modeling Hybrid Systems

Linear Coupled Component Automata

  The switched flow process is a dynamical discrete-continuous
system, or hybrid system

  Can provide more features than in Indexed MP language
  Several researchers have provided hybrid automata frameworks

–  Cassez and Larsen (2000), Alur et al. (1995)

  We have defined the LCCA framework

Switched Flow Process
LCCA Model

Switched Flow Process
Transform LCCA to MP

disjunction
over
transitions

disjunction
over modes

Outline

  Introductory example
  Review previous definitions of MP

  Define MP (using type theory)
  Convert MP to MIP
  Language for indexing
  Indexed MP
  Hybrid systems modeling (quick overview)

  Conclusions

Comparison of MP Languages

1 Based on OPL Studio 3.7.1. Version 4.0 has reduced features.
2 Including XPress-Kalis.

Comparison of Mathematical Definitions of MP

Conclusions

  Formal theory of indexed mathematical programs provided
–  programs can be written in this form
–  problem structure retained for algorithms

  Defined a compiler automatically generating mixed-integer programs
–  most algorithms expect this form
–  indexing structure is retained

  Hybrid systems
–  provided novel modeling framework
–  can transform these models to MP

  Demonstrated the value of type theory to new areas

Directions for Future Research

  Connect TyL to solvers
  Enhance language with differential equations

–  define transformation to algebraic equations

  Define a logic for hybrid systems
  Invent domain specific mathematical languages

–  types
molecule, atom, etc.

–  expressions
MW(m) where m : molecule, and MW : molecule  real

