Toward Interactive Statistical Modeling

 ${\sf Sooraj}\;{\sf Bhat}^1\quad{\sf Ashish}\;{\sf Agarwal}^2\quad{\sf Alexander}\;{\sf Gray}^1\quad{\sf Richard}\;{\sf Vuduc}^1$

¹ College of Computing, Georgia Institute of Technology ² Department of Computer Science, Yale University

Workshop on Automated Program Generation for Computational Science at ICCS 2010

ロトス部とスポトステレ

The team

Ashish Agarwal Yale University programming languages, optimization

Alexander Gray Georgia Institute of Technology machine learning, optimization

Richard Vuduc Georgia Institute of Technology *high-performance computing, linear algebra*

Statistics is everywhere

(日) (同) (日) (日)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Vision: reduce development time while retaining correctness & efficiency.

イロト 人間ト イヨト イヨト

Vision: reduce development time while retaining correctness & efficiency.

• key ideas: mechanization, type theory

Vision: reduce development time while retaining correctness & efficiency.

- key ideas: mechanization, type theory
- key contribution: first rigorous symbolic formalization of statistics

くロト く伺下 くヨト くヨト

Vision: reduce development time while retaining correctness & efficiency.

- key ideas: mechanization, type theory
- key contribution: first rigorous symbolic formalization of statistics

イロト イ伺ト イヨト イヨト

Example: Modeling height data

Gaussian model

Formulation:

$$egin{aligned} & X_i \sim ext{Normal}(heta, 1) \ & \hat{ heta} = rg\max_{ heta} f(x \mid heta) \end{aligned}$$

◆□→ ◆圖→ ◆国→ ◆国→ 三国

Formulation:

$$egin{aligned} X_i &\sim \operatorname{Normal}(heta, 1) \ \hat{ heta} &= rg\max_{ heta} f(x \mid heta) \end{aligned}$$

Solution: closed form

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

(日) (圖) (E) (E) (E)

Example: Modeling height data

mixture of Gaussians model

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Formulation:

Formulation:

$$egin{aligned} X_i &\sim \mathsf{Normal}(heta, 1) \ \hat{ heta} &= rg\max_{ heta} f(x \mid heta) \end{aligned}$$

$$Z_i \sim \text{Bernoulli}(0.5)$$

$$X_i \sim \text{Normal}((1 - Z_i)\theta_0 + Z_i\theta_1, 1)$$

$$\hat{\theta} = \arg \max_{\theta} f(x \mid \theta)$$

(日) (圖) (E) (E) (E)

Solution: closed form

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Formulation:

$X_i \sim \mathsf{Normal}(heta, 1)$ $\hat{ heta} = rg\max_{ heta} f(x \mid heta)$

Solution: closed form

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Formulation:

$$\begin{split} & Z_i \sim \mathsf{Bernoulli}(0.5) \\ & X_i \sim \mathsf{Normal}((1 - Z_i)\theta_0 + Z_i\theta_1, 1) \\ & \hat{\theta} = \arg\max_{\theta} f(x \mid \theta) \end{split}$$

Solution: an EM algorithm (type of optimizer)

(日) (圖) (E) (E) (E)

Formulation:

$X_i \sim \mathsf{Normal}(heta, 1)$ $\hat{ heta} = rg\max_{ heta} f(x \mid heta)$

Solution: closed form

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Formulation:

 $\begin{aligned} & Z_i \sim \text{Bernoulli(0.5)} \\ & X_i \sim \text{Normal}((1 - Z_i)\theta_0 + Z_i\theta_1, 1) \\ & \hat{\theta} = \arg\max_{\theta} f(x \mid \theta) \end{aligned}$

Solution: an EM algorithm (type of optimizer)

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minor conceptual changes lead to vastly different algorithms.

Formulation:

$X_i \sim \mathsf{Normal}(heta, 1)$ $\hat{ heta} = rg\max_{ heta} f(x \mid heta)$

Solution: closed form

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Formulation:

$$\begin{split} & Z_i \sim \mathsf{Bernoulli}(0.5) \\ & X_i \sim \mathsf{Normal}((1 - Z_i)\theta_0 + Z_i\theta_1, 1) \\ & \hat{\theta} = \arg\max_{\theta} f(x \mid \theta) \end{split}$$

Solution: an EM algorithm (type of optimizer)

$$\begin{array}{ll} (\hat{\theta}_{0}, \hat{\theta}_{1}) &:= \; \mathrm{rand}\,()\,; \\ \mathrm{while} \;\;(\ldots) & \\ & \mathrm{for}\;\; \mathrm{i}\;=\; 1 \;\; \mathrm{to}\;\; n \;\; \mathrm{do} & \\ & \;\; \gamma_{i}\;\; :=\; \phi(x_{i}; \hat{\theta}_{1}, 1) / \left(\phi(x_{i}; \hat{\theta}_{0}, 1) + \phi(x_{i}; \hat{\theta}_{1}, 1) \right)\,; \\ & \;\; \hat{\theta}_{0}\;\; :=\; \sum_{i=1}^{n} \; (1 - \gamma_{i}) \ast x_{i} \; / \; \sum_{i=1}^{n} \; (1 - \gamma_{i})\,; \\ & \;\; \hat{\theta}_{1}\;\; :=\; \sum_{i=1}^{n} \; \gamma_{i} \ast x_{i} \; / \; \sum_{i=1}^{n} \; \gamma_{i}\,; \\ & \;\; \mathrm{return}\;\; (\hat{\theta}_{0}, \hat{\theta}_{1})\,; \end{array}$$

- Minor conceptual changes lead to vastly different algorithms.
- AutoBayes (2003) handles varying models for MLE/MAP but there are many more possible axes of variation.

Bhat et al. ()

Idea: Let's mechanize these derivations

Goal: declarative specification \longrightarrow executable code

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Idea: Let's mechanize these derivations

 $\textbf{Goal:} \ \text{declarative specification} \ \longrightarrow \ \text{executable code}$

 $\Rightarrow\,$ need a symbolic representation of statistics

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Idea: Let's mechanize these derivations

 $\textbf{Goal:} \ \text{declarative specification} \longrightarrow \text{executable code}$

 \Rightarrow need a symbolic representation of statistics

Our approach

Rigorously defined mathematical language

- enables stating statistical problems
- Schemas program transformations
 - embodiments of mathematical reformulations
- Interactive algorithm assistant
 - enables exploring the space of correct solutions

通 と く ヨ と く ヨ と

Many types of mathematics

• probability, optimization, calculus, linear algebra, ...

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Many types of mathematics

• probability, optimization, calculus, linear algebra, ...

Computational aspects

- algorithms & datastructures
- numerical stability, robustness
- programming expertise and code tuning

・ 戸 ト ・ ヨ ト ・ ヨ ト

Many types of mathematics

• probability, optimization, calculus, linear algebra, ...

Computational aspects

- algorithms & datastructures
- numerical stability, robustness
- programming expertise and code tuning

Myriad solution strategies

- e.g., SVMs, EM, L2E, NMF, various optimizers, ...
- domain-driven customizations

・ 同 ト ・ ヨ ト ・ ヨ ト

Many types of mathematics

• probability, optimization, calculus, linear algebra, ...

Computational aspects

- algorithms & datastructures
- numerical stability, robustness
- programming expertise and code tuning

Myriad solution strategies

- e.g., SVMs, EM, L2E, NMF, various optimizers, ...
- domain-driven customizations

\implies Need an *expressive* symbolic representation of mathematics.

 $\mathsf{Expressive\ representation\ } \longrightarrow \mathsf{easier\ to\ create\ nonsensical\ expressions}$

• especially true for mechanically generated expressions

(4 回) (4 回) (4 回)

 $\mathsf{Expressive\ representation\ } \longrightarrow \mathsf{easier\ to\ create\ nonsensical\ expressions}$

• especially true for mechanically generated expressions

Many schemas \longrightarrow more chances for errors to sneak in

・ 同 ト ・ ヨ ト ・ ヨ ト

Expressive representation \longrightarrow easier to create nonsensical expressions

especially true for mechanically generated expressions

Many schemas \longrightarrow more chances for errors to sneak in

 \implies We use type theory to promote correctness.

・ 同 ト ・ ヨ ト ・ ヨ ト

Type Theory 101

The usual story: Types are a way to rule out ill-formed expressions.

3

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

The usual story: Types are a way to rule out ill-formed expressions.

The bigger story: Type theory connects mathematics and computation.

3

ヘロト 人間ト 人造ト 人造ト

The usual story: Types are a way to rule out ill-formed expressions.

The bigger story: Type theory connects mathematics and computation.

Advanced type theories can be used to formalize mathematics.

- an alternative to set theory
- forms the basis of several modern theorem provers

② These type theories have a computational interpretation.

- Curry-Howard: type systems are logics
- increased mathematical precision about programs

白 돈 조 國 돈 조 물 돈 조 물 돈

language = syntax + type system + semantics

3

イロト イポト イヨト イヨト

language = syntax + type system + semantics

Optimization	Probability
Core language	

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$T ::= \texttt{Bool} \mid \texttt{Int} \mid \texttt{Real} \mid T_1 imes \ldots imes T_n \mid T_1 o T_2$$

$$\begin{split} E &::= \texttt{true} \mid \texttt{false} \mid \neg E \mid E_1 \lor E_2 \mid E_1 \land E_2 & \texttt{Booleans} \\ &\mid r \mid E_1 + E_2 \mid E_1 \ast E_2 \mid E_1^{E_2} \mid \log E & \texttt{reals} \\ &\mid (E_1, \dots, E_n) \mid E.k & \texttt{tuples} \\ &\mid \texttt{if} \ E_1 \ \texttt{then} \ E_2 \ \texttt{else} \ E_3 \mid E_1 = E_2 \mid E_1 \leq E_2 & \texttt{conditions} \\ &\mid x \mid \lambda x : T \cdot E \mid E_1 \ E_2 \mid \texttt{fix} \ E & \texttt{functional core} \end{split}$$

• A typed lambda calculus + recursion.

э.

ヘロト 人間ト 人造ト 人造ト

$$E \mathrel{+}= \underset{x_1:T_1,\ldots,x_n:T_n}{\operatorname{arg\,max}} \{E_1 \mid E_2\} \qquad \text{optimization}$$

• Full account: "Automating Mathematical Program Transformations" (Agarwal et al., PADL 2010).

3

ヘロト 人間 とくほとく ヨトー

Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

• Almost all probabilistic languages do not support them.

Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

• Almost all probabilistic languages do not support them.

Why?

- 4 回 ト - 4 回 ト - 4 回 ト
Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

• Almost all probabilistic languages do not support them.

Why?

- Computation and semantics are not as straightforward anymore.
 - weighted lists & summation vs. integration
 - We use symbolic reasoning.

・ 同 ト ・ ヨ ト ・ ヨ ト

Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

• Almost all probabilistic languages do not support them.

Why?

- Computation and semantics are not as straightforward anymore.
 - weighted lists & summation vs. integration
 - We use symbolic reasoning.
- Probability density functions now require more attention.
 - Mixed discrete-continuous densities require extra bookkeeping.
 - Not all distributions have a density.
 - We implement the necessary bookkeeping and restrictions.

Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

• Almost all probabilistic languages do not support them.

Why?

- Computation and semantics are not as straightforward anymore.
 - weighted lists & summation vs. integration
 - We use symbolic reasoning.
- Probability density functions now require more attention.
 - Mixed discrete-continuous densities require extra bookkeeping.
 - Not all distributions have a density.
 - We implement the necessary bookkeeping and restrictions.
- Functions must be measurable.
 - Non-measurable functions are not constructible in our language.

(비) (관) (관) (관) (관)

 $T \mathrel{+}= \operatorname{Prob} T$

- Probability monad (Giry 1981, Ramsey & Pfeffer 2003).
- Continuous random variables! (e.g., Prob Real)
- Semantics in terms of measure theory.

Bhat et al. ()

Modeling example revisited

Recall the example from before:

```
X_i \sim \mathsf{Normal}(	heta, 1)
rg\max_{	heta} f(x \mid 	heta)
```

3

ヘロト 人間 とくほとく ヨトー

Modeling example revisited

Recall the example from before:

$$X_i \sim \mathsf{Normal}(heta, 1)$$

 $rg\max_{ heta} f(x \mid heta)$

In our language:

 $\begin{array}{l} \texttt{let } \textit{F} \ \theta = \\ \texttt{var } X_1 \ \sim \ \texttt{normal} \ \theta \ \texttt{1} \ \texttt{in} \\ \texttt{var } X_2 \ \sim \ \texttt{normal} \ \theta \ \texttt{1} \ \texttt{in} \\ \texttt{var } X_3 \ \sim \ \texttt{normal} \ \theta \ \texttt{1} \ \texttt{in} \\ \texttt{return} \ (X_1, X_2, X_3) \end{array}$

in

 $\underset{\theta: \texttt{Real}}{\operatorname{arg\,max}} \left\{ \text{ pdf } (F \ \theta) \ (x_1, x_2, x_3) \ | \ \texttt{true} \right\}$

イロト イポト イヨト イヨト 二日

Modeling example revisited

Recall the example from before:

$$egin{aligned} X_i &\sim \mathsf{Normal}(heta, 1)\ &rg\max_{ heta} f(x \mid heta) \end{aligned}$$

In our language:

let $F \ \theta =$ var $X_1 \sim \text{normal } \theta \ 1 \text{ in}$ var $X_2 \sim \text{normal } \theta \ 1 \text{ in}$ var $X_3 \sim \text{normal } \theta \ 1 \text{ in}$ return (X_1, X_2, X_3)

in

 $\underset{\theta: \texttt{Real}}{\texttt{arg max}} \left\{ \texttt{pdf} \left(F \ \theta \right) \left(x_1, x_2, x_3 \right) \mid \texttt{true} \right\}$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Mechanization requires a higher level of formalism.

Bhat et al. ()

Schemas

Logically: expression reformulation theorems

• example: $\forall a, b \in \mathbb{R}, a * b = 0 \mapsto a = 0 \lor b = 0$

(日) (圖) (E) (E) (E)

Schemas

Logically: expression reformulation theorems

• example: $\forall a, b \in \mathbb{R}, a * b = 0 \mapsto a = 0 \lor b = 0$

Operationally: rewrite rules (implemented as OCaml functions)

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Schemas

Logically: expression reformulation theorems

• example: $\forall a, b \in \mathbb{R}, a * b = 0 \mapsto a = 0 \lor b = 0$

Operationally: rewrite rules (implemented as OCaml functions)

Current schema library contains 100+ schemas

- computer algebra
- propositional logic
- equation manipulation
- calculus
- optimization
- probability & statistics

・ 置 ト ・ ヨ ト ・ ヨ ト

EM is widely used for maximum likelihood estimation (MLE).

• will require everything introduced so far

EM is widely used for maximum likelihood estimation (MLE).

• will require everything introduced so far

$$\underset{\theta:\texttt{Real}}{\texttt{arg max } pdf} \left(\qquad \qquad \right) x \quad \mapsto \quad$$

EM is widely used for maximum likelihood estimation (MLE).will require everything introduced so far

$$\underset{\theta:\texttt{Real}}{\texttt{arg max pdf}} \left(\begin{array}{c} \texttt{var } Z \sim F_Z \texttt{ in} \\ \texttt{var } X \sim F_X \texttt{ in} \\ \texttt{return } X \end{array} \right) x \quad \mapsto \quad$$

 $\mathsf{E}\mathsf{M}$ is widely used for maximum likelihood estimation (MLE).

• will require everything introduced so far

$$\begin{array}{l} \underset{\theta: \operatorname{Real}}{\operatorname{arg\,max}} \operatorname{pdf} \left(\begin{array}{c} \operatorname{var} Z \sim F_Z \text{ in} \\ \operatorname{var} X \sim F_X \text{ in} \\ \operatorname{return} X \end{array} \right) x \quad \mapsto \\ \\ \operatorname{let\,rec\,loop} \, \hat{\theta} = \\ \\ \operatorname{if} (...) \operatorname{then} \, \hat{\theta} \\ \\ \operatorname{else\,loop\,arg\,max}_{\theta: \operatorname{Real}} \mathbb{E}_{z \sim C}(\operatorname{log}(\operatorname{pdf} J(x, z))) \\ \operatorname{in} \\ \\ \operatorname{loop} \, \theta_0 \end{array} \right)$$

EM is widely used for maximum likelihood estimation (MLE).

• will require everything introduced so far

$$\begin{array}{l} \underset{\theta: \texttt{Real}}{\texttt{arg max}} \operatorname{pdf} \left(\begin{array}{c} \operatorname{var} Z \sim F_Z \text{ in} \\ \operatorname{var} X \sim F_X \text{ in} \\ \operatorname{return} X \end{array} \right) x \quad \mapsto \\ \\ \texttt{let rec loop } \hat{\theta} = \\ \\ \texttt{if } (\dots) \texttt{ then } \hat{\theta} \\ \\ \texttt{else loop arg max}_{\theta: \texttt{Real}} \mathbb{E}_{z \sim C}(\operatorname{log}(\texttt{pdf } J(x, z))) \\ \\ \texttt{in} \\ \\ \texttt{loop } \theta_0 \end{array} \right)$$

$$J = \begin{pmatrix} \operatorname{var} Z \sim F_Z \text{ in} \\ \operatorname{var} X \sim F_X \text{ in} \\ \operatorname{return} (X, Z) \end{pmatrix} \quad C' = \begin{pmatrix} \operatorname{var} Z \sim F_Z \text{ in} \\ \operatorname{var} X \sim F_X \text{ in} \\ \operatorname{condition} X = x \text{ in} \\ \operatorname{return} Z \end{pmatrix} \quad C = C'[\theta := \hat{\theta}]$$

イロト 不得下 イヨト イヨト 二日

EM is widely used for maximum likelihood estimation (MLE).

• will require everything introduced so far

$$\begin{array}{l} \arg\max_{\theta:\operatorname{Real}} \operatorname{pdf} \left(\begin{array}{c} \operatorname{var} Z \sim F_Z \text{ in} \\ \operatorname{var} X \sim F_X \text{ in} \\ \operatorname{return} X \end{array} \right) x \quad \mapsto \\ \\ \operatorname{let} \operatorname{rec} \operatorname{loop} \hat{\theta} = \\ \\ \operatorname{if} (...) \operatorname{then} \hat{\theta} \\ \\ \operatorname{else} \operatorname{loop} \operatorname{arg} \operatorname{max}_{\theta:\operatorname{Real}} \mathbb{E}_{z \sim C}(\operatorname{log}(\operatorname{pdf} J(x, z))) \\ \operatorname{in} \\ \\ \operatorname{loop} \theta_0 \end{array} \right)$$

$$J = \begin{pmatrix} \operatorname{var} Z \sim F_Z \text{ in} \\ \operatorname{var} X \sim F_X \text{ in} \\ \operatorname{return} (X, Z) \end{pmatrix} \quad C' = \begin{pmatrix} \operatorname{var} Z \sim F_Z \text{ in} \\ \operatorname{var} X \sim F_X \text{ in} \\ \operatorname{condition} X = x \text{ in} \\ \operatorname{return} Z \end{pmatrix} \quad C = C'[\theta := \hat{\theta}]$$

Relies crucially on symbolic operations.

Bhat et al. ()

イロト イポト イヨト イヨト

Interactive algorithm assistant

Features

- enter problems
- apply schemas
- undo/redo
- combinators

Status

- can solve several textbook examples of MLE, incl. via EM
- autotuning + more sophisticated code generation is planned

Come see me for a demo!

```
File Edit View Terminal Help
sooraj@lucy:~/mathProg/om$ om
       Objective Caml version 3.11.1
# load gaussian::
 : Om.Syntax.expr =
rgmax{mu : R, ss : R}{
 pdf
 (let pick = normal mu ss in
  var x1 ~ pick in var x2 ~ pick in var x3 ~ pick in return (x1, x2, x3))
 (9. 28. 11)
 | 0 \ll ss
 ap ( let simpl <&> pdf simpl );;
 : Om.Syntax.expr =
rgmax{mu : R, ss : R}{
 ss^-1.500000 * %e^((9 - mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
 -0.500000 + (11 - mu)^2/ss * -0.500000) * (2 * %pi)^-1.500000
 | \Theta \ll ss
 ap ( argmax log <&> log simpl <&> argmax add );;
 : Om.Syntax.expr =
argmax{mu : R, ss : R}{
 -1.500000 * log ss + (9 - mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
 -0.500000 + (11 - mu)^2/ss * -0.500000
  | \Theta \ll ss
 ap descartes::
 : Om.Svntax.expr =
rgmax{mu : R, ss : R}{
 -1.500000 * log ss + (9 - mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
 -0.500000 + (11 - mu)^2/ss * -0.500000
 | 0 \le s_5 \& 0 = -1.500000/s_5 + (9 - mu)^2 * s_5^2 * 0.500000 + (28 - mu)^2
       ss^-2 * 0.500000 + (11 - mu)^2 * ss^-2 * 0.500000 & 0 = 1/ss * (9 -
   mu) + 1/ss * (28 - mu) + 1/ss * (11 - mu)}
 ap ( rewrite undistr <&> rewrite factors 0 <&> simpl <&> back solve None );;
 : Om.Svntax.expr =
 rgmax{mu : R, ss : R}{
 -1.500000 * log ss + (9 - mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
 -0.500000 + (11 - mu)^2/ss * -0.500000
 | mu = 16.000000 && ss = 72.666667}
```

Conclusions

- The first symbolic formalization of statistics for freely expressing statistical problems and reformulations
 - type-theoretic formalization of probability & optimization
 - continuous probability distributions
- An implementation of the language & schemas
 - the Expectation-Maximization (EM) schema
 - interactive algorithm assistant
- Future plans include incorporating feedback
 - autotuning, high-performance code generation
 - model selection, causal inference

(4 間) トイヨト イヨト

Thank you

Fin.

<□> <□> <□> <三> <三> <三> <三> <三> <三</td>