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Statistics is everywhere
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But the workflow is still mostly manual

Astonomer Statistician

Model Algorithm  Code Experiments
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Example: Modeling height data

Gaussian model
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Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)
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Example: Modeling height data
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Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)

Solution: closed form

θ̂ =
1

n

n
∑

i=1

xi

Formulation:

Zi ∼ Bernoulli(0.5)

Xi ∼ Normal((1 − Zi)θ0 + Ziθ1, 1)

θ̂ = arg max
θ

f (x | θ)
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Formulation:

Zi ∼ Bernoulli(0.5)

Xi ∼ Normal((1 − Zi)θ0 + Ziθ1, 1)

θ̂ = arg max
θ

f (x | θ)

Solution: an EM algorithm (type of optimizer)

(θ̂0, θ̂1) := rand ();

while (...)

for i = 1 to n do

γi := φ(xi ; θ̂1,1)/(φ(xi ; θ̂0,1)+φ(xi ; θ̂1,1));

θ̂0 :=
P

n

i=1(1-γi )*xi /
P

n

i=1(1-γi );

θ̂1 :=
P

n

i=1 γi *xi /
P

n

i=1 γi ;

return (θ̂0, θ̂1);
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θ̂0 :=
P

n

i=1(1-γi )*xi /
P

n

i=1(1-γi );

θ̂1 :=
P

n

i=1 γi *xi /
P

n

i=1 γi ;

return (θ̂0, θ̂1);

Minor conceptual changes lead to vastly different algorithms.
AutoBayes (2003) handles varying models for MLE/MAP – but there
are many more possible axes of variation.
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Idea: Let’s mechanize these derivations

Goal: declarative specification −→ executable code
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Idea: Let’s mechanize these derivations

Goal: declarative specification −→ executable code

⇒ need a symbolic representation of statistics

Our approach

1 Rigorously defined mathematical language
enables stating statistical problems

2 Schemas – program transformations
embodiments of mathematical reformulations

3 Interactive algorithm assistant
enables exploring the space of correct solutions
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Challenge 1: Statistics is big

Many types of mathematics

probability, optimization, calculus, linear algebra, . . .
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Computational aspects

algorithms & datastructures

numerical stability, robustness

programming expertise and code tuning

Myriad solution strategies

e.g., SVMs, EM, L2E, NMF, various optimizers, . . .

domain-driven customizations

=⇒ Need an expressive symbolic representation of mathematics.
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Challenge 2: Ensuring correctness

Expressive representation −→ easier to create nonsensical expressions

especially true for mechanically generated expressions
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Challenge 2: Ensuring correctness

Expressive representation −→ easier to create nonsensical expressions

especially true for mechanically generated expressions

Many schemas −→ more chances for errors to sneak in

=⇒ We use type theory to promote correctness.
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Type Theory 101

The usual story: Types are a way to rule out ill-formed expressions.

Bhat et al. () Toward Interactive Statistical Modeling 12 / 22



Type Theory 101

The usual story: Types are a way to rule out ill-formed expressions.

The bigger story: Type theory connects mathematics and computation.

Bhat et al. () Toward Interactive Statistical Modeling 12 / 22



Type Theory 101

The usual story: Types are a way to rule out ill-formed expressions.

The bigger story: Type theory connects mathematics and computation.

1 Advanced type theories can be used to formalize mathematics.
an alternative to set theory
forms the basis of several modern theorem provers

2 These type theories have a computational interpretation.
Curry-Howard: type systems are logics
increased mathematical precision about programs
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Language

language = syntax + type system + semantics
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Language: Core

T ::= Bool | Int | Real | T1 × . . . × Tn | T1 → T2

E ::= true | false | ¬E | E1 ∨ E2 | E1 ∧ E2 Booleans

| r | E1 + E2 | E1 ∗ E2 | EE2
1 | log E reals

| (E1, . . . ,En) | E .k tuples

| if E1 then E2 else E3 | E1 = E2 | E1 ≤ E2 conditions

| x | λx : T ! E | E1 E2 | fix E functional core

A typed lambda calculus + recursion.

Bhat et al. () Toward Interactive Statistical Modeling 14 / 22



Language: Optimization

E += arg max
x1:T1,...,xn:Tn

{E1 | E2} optimization

Full account: “Automating Mathematical Program Transformations”
(Agarwal et al., PADL 2010).
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Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.
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Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

Almost all probabilistic languages do not support them.

Why?

Computation and semantics are not as straightforward anymore.
weighted lists & summation vs. integration
We use symbolic reasoning.

Probability density functions now require more attention.
Mixed discrete-continuous densities require extra bookkeeping.
Not all distributions have a density.
We implement the necessary bookkeeping and restrictions.

Functions must be measurable.
Non-measurable functions are not constructible in our language.
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Language: Probability – new!

T += Prob T

E += bernoulli E | normal E1 E2 | . . . distributions

| return E singleton distribution

| var x ∼ E1 in E2 random variables

| condition E1 in E2 conditional distributions

| Ex∼E1(E2) expectation

| pdf E density functions

Probability monad (Giry 1981, Ramsey & Pfeffer 2003).

Continuous random variables! (e.g., Prob Real)

Semantics in terms of measure theory.
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Modeling example revisited

Recall the example
from before:

Xi ∼ Normal(θ, 1)

arg max
θ

f (x | θ)
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Modeling example revisited

Recall the example
from before:

Xi ∼ Normal(θ, 1)

arg max
θ

f (x | θ)

In our language:

let F θ =

var X1 ∼ normal θ 1 in

var X2 ∼ normal θ 1 in

var X3 ∼ normal θ 1 in

return (X1, X2, X3)

in

arg max
θ:Real

{ pdf (F θ) (x1, x2, x3) | true }
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Modeling example revisited

Recall the example
from before:

Xi ∼ Normal(θ, 1)

arg max
θ

f (x | θ)

In our language:

let F θ =

var X1 ∼ normal θ 1 in

var X2 ∼ normal θ 1 in

var X3 ∼ normal θ 1 in

return (X1, X2, X3)

in

arg max
θ:Real

{ pdf (F θ) (x1, x2, x3) | true }

Mechanization requires a higher level of formalism.
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Schemas

Logically: expression reformulation theorems

example: ∀a, b ∈ R, a ∗ b = 0 ,→ a = 0 ∨ b = 0
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Schemas

Logically: expression reformulation theorems

example: ∀a, b ∈ R, a ∗ b = 0 ,→ a = 0 ∨ b = 0

Operationally: rewrite rules (implemented as OCaml functions)

Current schema library contains 100+ schemas

computer algebra

propositional logic

equation manipulation

calculus

optimization

probability & statistics
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The Expectation-Maximization (EM) schema

EM is widely used for maximum likelihood estimation (MLE).

will require everything introduced so far
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The Expectation-Maximization (EM) schema

EM is widely used for maximum likelihood estimation (MLE).

will require everything introduced so far

arg max
θ:Real

pdf





var Z ∼ FZ in

var X ∼ FX in

return X



 x ,→

let rec loop θ̂ =
if (...) then θ̂

else loop arg maxθ:Real Ez∼C (log(pdf J (x , z)))
in

loop θ0
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 x ,→

let rec loop θ̂ =
if (...) then θ̂

else loop arg maxθ:Real Ez∼C (log(pdf J (x , z)))
in

loop θ0

J =

0

@

var Z ∼ FZ in

var X ∼ FX in

return (X , Z )

1

A C
′ =

0

B

B

@

var Z ∼ FZ in

var X ∼ FX in

condition X = x in

return Z

1

C

C

A

C = C
′[θ := θ̂]
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The Expectation-Maximization (EM) schema

EM is widely used for maximum likelihood estimation (MLE).

will require everything introduced so far

arg max
θ:Real

pdf





var Z ∼ FZ in

var X ∼ FX in

return X



 x ,→

let rec loop θ̂ =
if (...) then θ̂

else loop arg maxθ:Real Ez∼C (log(pdf J (x , z)))
in

loop θ0

J =

0

@

var Z ∼ FZ in

var X ∼ FX in

return (X , Z )

1

A C
′ =

0

B

B

@

var Z ∼ FZ in

var X ∼ FX in

condition X = x in

return Z

1

C

C

A

C = C
′[θ := θ̂]

Relies crucially on symbolic operations.
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Interactive algorithm assistant

Features

enter problems

apply schemas

undo/redo

combinators

Status

can solve several
textbook examples of
MLE, incl. via EM

autotuning + more
sophisticated code
generation is planned

Come see me for a demo!
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Conclusions

The first symbolic formalization of statistics for freely expressing
statistical problems and reformulations

type-theoretic formalization of probability & optimization
continuous probability distributions

An implementation of the language & schemas
the Expectation-Maximization (EM) schema
interactive algorithm assistant

Future plans include incorporating feedback
autotuning, high-performance code generation
model selection, causal inference
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Thank you

Fin.
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