Toward Interactive Statistical Modeling

Sooraj Bhat1 Ashish Agarwal2 Alexander Gray1 Richard Vuduc1

1 College of Computing, Georgia Institute of Technology
2 Department of Computer Science, Yale University

Workshop on Automated Program Generation for Computational Science at ICCS 2010
The team

Ashish Agarwal
Yale University
programming languages, optimization

Alexander Gray
Georgia Institute of Technology
machine learning, optimization

Richard Vuduc
Georgia Institute of Technology
high-performance computing, linear algebra
Statistics is everywhere

finance

astrophysics

EEG analysis

bioinformatics

retail demand prediction

computational chemistry
But the workflow is still mostly manual
But the workflow is still mostly manual

Vision: reduce development time while retaining correctness & efficiency.
But the workflow is still mostly manual

Vision: reduce development time while retaining correctness & efficiency.

- **key ideas:** mechanization, type theory
But the workflow is still mostly manual

Vision: reduce development time while retaining correctness & efficiency.

- **key ideas**: mechanization, type theory
- **key contribution**: first rigorous symbolic formalization of statistics
But the workflow is still mostly manual

Vision: reduce development time while retaining correctness & efficiency.

- **key ideas**: mechanization, type theory
- **key contribution**: first rigorous symbolic formalization of statistics
Example: Modeling height data

Gaussian model

Height (cm)
Trying alternative statistical models

Formulation:

\[X_i \sim \text{Normal}(\theta, 1) \]
\[\hat{\theta} = \arg \max_{\theta} f(x \mid \theta) \]
Trying alternative statistical models

Formulation:

\[X_i \sim \text{Normal}(\theta, 1) \]
\[\hat{\theta} = \arg \max_{\theta} f(x \mid \theta) \]

Solution: closed form

\[\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i \]
Example: Modeling height data

mixture of Gaussians model

![Graph showing mixture of Gaussians model for height data.](image-url)
Trying alternative statistical models

Formulation:

\[X_i \sim \text{Normal}(\theta, 1) \]
\[\hat{\theta} = \arg \max_{\theta} f(x \mid \theta) \]

Solution: \textit{closed form}

\[\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

Formulation:

\[Z_i \sim \text{Bernoulli}(0.5) \]
\[X_i \sim \text{Normal}((1 - Z_i)\theta_0 + Z_i\theta_1, 1) \]
\[\hat{\theta} = \arg \max_{\theta} f(x \mid \theta) \]
Trying alternative statistical models

Formulation:

\[X_i \sim \text{Normal}(\theta, 1) \]
\[\hat{\theta} = \arg \max_{\theta} f(x \mid \theta) \]

Solution: \textit{closed form}

\[\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

Formulation:

\[Z_i \sim \text{Bernoulli}(0.5) \]
\[X_i \sim \text{Normal}((1 - Z_i)\theta_0 + Z_i\theta_1, 1) \]
\[\hat{\theta} = \arg \max_{\theta} f(x \mid \theta) \]

Solution: \textit{an EM algorithm (type of optimizer)}

\[(\hat{\theta}_0, \hat{\theta}_1) := \text{rand}();\]
while (…)
 for i = 1 to n do
 \[\gamma_i := \frac{\phi(x_i; \hat{\theta}_1, 1)}{\phi(x_i; \hat{\theta}_0, 1) + \phi(x_i; \hat{\theta}_1, 1)} \]
 \[\hat{\theta}_0 := \frac{\sum_{i=1}^{n} (1 - \gamma_i) \cdot x_i}{\sum_{i=1}^{n} (1 - \gamma_i)} \]
 \[\hat{\theta}_1 := \frac{\sum_{i=1}^{n} \gamma_i \cdot x_i}{\sum_{i=1}^{n} \gamma_i} \]
 return \((\hat{\theta}_0, \hat{\theta}_1)\);
Trying alternative statistical models

Formulation:

\[X_i \sim \text{Normal}(\theta, 1) \]
\[\hat{\theta} = \arg \max_{\theta} f(x \mid \theta) \]

Solution: *closed form*

\[\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

Formulation:

\[Z_i \sim \text{Bernoulli}(0.5) \]
\[X_i \sim \text{Normal}((1 - Z_i)\theta_0 + Z_i\theta_1, 1) \]
\[\hat{\theta} = \arg \max_{\theta} f(x \mid \theta) \]

Solution: *an EM algorithm (type of optimizer)*

\[(\hat{\theta}_0, \hat{\theta}_1) := \text{rand}(); \]
\[\text{while} \ (\ldots) \]
\[\text{for } i = 1 \text{ to } n \text{ do} \]
\[\gamma_i := \frac{\phi(x_i; \hat{\theta}_1, 1)}{(\phi(x_i; \hat{\theta}_0, 1) + \phi(x_i; \hat{\theta}_1, 1))}; \]
\[\hat{\theta}_0 := \frac{\sum_{i=1}^{n} (1 - \gamma_i) \cdot x_i}{\sum_{i=1}^{n} (1 - \gamma_i)}; \]
\[\hat{\theta}_1 := \frac{\sum_{i=1}^{n} \gamma_i \cdot x_i}{\sum_{i=1}^{n} \gamma_i}; \]
\[\text{return } (\hat{\theta}_0, \hat{\theta}_1); \]

- Minor conceptual changes lead to vastly different algorithms.
Trying alternative statistical models

Formulation:

\[X_i \sim \text{Normal}(\theta, 1) \]
\[\hat{\theta} = \arg \max_{\theta} f(x \mid \theta) \]

Solution: closed form

\[\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

Formulation:

\[Z_i \sim \text{Bernoulli}(0.5) \]
\[X_i \sim \text{Normal}((1 - Z_i)\theta_0 + Z_i\theta_1, 1) \]
\[\hat{\theta} = \arg \max_{\theta} f(x \mid \theta) \]

Solution: an EM algorithm (type of optimizer)

\[(\hat{\theta}_0, \hat{\theta}_1) := \text{rand}();\]
\[\text{while } (...) \]
\[\text{for } i = 1 \text{ to } n \text{ do}\]
\[\gamma_i := \frac{\phi(x_i; \hat{\theta}_1,1)}{(\phi(x_i; \hat{\theta}_0,1)+\phi(x_i; \hat{\theta}_1,1))}; \]
\[\hat{\theta}_0 := \frac{\sum_{i=1}^{n} (1-\gamma_i) \cdot x_i}{\sum_{i=1}^{n} (1-\gamma_i)}; \]
\[\hat{\theta}_1 := \frac{\sum_{i=1}^{n} \gamma_i \cdot x_i}{\sum_{i=1}^{n} \gamma_i}; \]
\[\text{return } (\hat{\theta}_0, \hat{\theta}_1);\]

• Minor conceptual changes lead to vastly different algorithms.
• AutoBayes (2003) handles varying models for MLE/MAP – but there are many more possible axes of variation.
Idea: Let’s mechanize these derivations

Goal: declarative specification \rightarrow executable code
Idea: Let’s mechanize these derivations

Goal: declarative specification \rightarrow executable code

\Rightarrow need a symbolic representation of statistics
Idea: Let’s mechanize these derivations

Goal: declarative specification \rightarrow executable code

\Rightarrow need a symbolic representation of statistics

Our approach

1. Rigorously defined mathematical language
 - enables stating statistical problems

2. Schemas – program transformations
 - embodiments of mathematical reformulations

3. Interactive algorithm assistant
 - enables exploring the space of correct solutions
Challenge 1: Statistics is big

Many types of mathematics

- probability, optimization, calculus, linear algebra, ...
Challenge 1: Statistics is big

Many types of mathematics
- probability, optimization, calculus, linear algebra, …

Computational aspects
- algorithms & datastructures
- numerical stability, robustness
- programming expertise and code tuning
Challenge 1: Statistics is big

Many types of mathematics
 - probability, optimization, calculus, linear algebra, \ldots

Computational aspects
 - algorithms & datastructures
 - numerical stability, robustness
 - programming expertise and code tuning

Myriad solution strategies
 - e.g., SVMs, EM, L2E, NMF, various optimizers, \ldots
 - domain-driven customizations
Challenge 1: Statistics is big

Many types of mathematics
 - probability, optimization, calculus, linear algebra, ...

Computational aspects
 - algorithms & datastructures
 - numerical stability, robustness
 - programming expertise and code tuning

Myriad solution strategies
 - e.g., SVMs, EM, L2E, NMF, various optimizers, ...
 - domain-driven customizations

⇒ Need an *expressive* symbolic representation of mathematics.
Challenge 2: Ensuring correctness

Expressive representation \rightarrow easier to create nonsensical expressions

- especially true for mechanically generated expressions
Challenge 2: Ensuring correctness

Expressive representation \rightarrow easier to create nonsensical expressions
 - especially true for mechanically generated expressions

Many schemas \rightarrow more chances for errors to sneak in
Challenge 2: Ensuring correctness

Expressive representation → easier to create nonsensical expressions
 especially true for mechanically generated expressions

Many schemas → more chances for errors to sneak in

⇒ We use type theory to promote correctness.
The usual story: Types are a way to rule out ill-formed expressions.
Type Theory 101

The usual story: Types are a way to rule out ill-formed expressions.

The bigger story: Type theory connects mathematics and computation.
Type Theory 101

The usual story: Types are a way to rule out ill-formed expressions.

The bigger story: Type theory connects mathematics and computation.

1. Advanced type theories can be used to formalize mathematics.
 - an alternative to set theory
 - forms the basis of several modern theorem provers

2. These type theories have a computational interpretation.
 - Curry-Howard: type systems are logics
 - increased mathematical precision about programs
Language

\[\text{language} = \text{syntax} + \text{type system} + \text{semantics} \]
language = syntax + type system + semantics

Core language

Optimization Probability
Language: Core

\[T ::= \text{Bool} \mid \text{Int} \mid \text{Real} \mid T_1 \times \ldots \times T_n \mid T_1 \rightarrow T_2 \]

\[E ::= \text{true} \mid \text{false} \mid \neg E \mid E_1 \lor E_2 \mid E_1 \land E_2 \]
\[\mid r \mid E_1 + E_2 \mid E_1 \ast E_2 \mid E_1^{E_2} \mid \log E \]
\[\mid (E_1, \ldots, E_n) \mid E.k \]
\[\mid \text{if } E_1 \text{ then } E_2 \text{ else } E_3 \mid E_1 = E_2 \mid E_1 \leq E_2 \]
\[\mid x \mid \lambda x : T \cdot E \mid E_1 E_2 \mid \text{fix } E \]

- A typed lambda calculus + recursion.
\[
E \models \arg \max_{x_1: T_1, \ldots, x_n: T_n} \left\{ E_1 \mid E_2 \right\} \quad \text{optimization}
\]

- Full account: “Automating Mathematical Program Transformations” (Agarwal et al., PADL 2010).
Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.
Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

- Almost all probabilistic languages do not support them.
Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

- Almost all probabilistic languages do not support them.

Why?
Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

- Almost all probabilistic languages do not support them.

Why?

- Computation and semantics are not as straightforward anymore.
 - weighted lists & summation vs. integration
 - We use symbolic reasoning.
Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

- Almost all probabilistic languages do not support them.

Why?

- Computation and semantics are not as straightforward anymore.
 - weighted lists & summation vs. integration
 - We use symbolic reasoning.

- Probability density functions now require more attention.
 - Mixed discrete-continuous densities require extra bookkeeping.
 - Not all distributions have a density.
 - We implement the necessary bookkeeping and restrictions.
Challenges in modeling continuous probability distributions

Continuous random variables arise naturally in numerous applications.

- Almost all probabilistic languages do not support them.

Why?

- Computation and semantics are not as straightforward anymore.
 - weighted lists & summation vs. integration
 - We use symbolic reasoning.

- Probability density functions now require more attention.
 - Mixed discrete-continuous densities require extra bookkeeping.
 - Not all distributions have a density.
 - We implement the necessary bookkeeping and restrictions.

- Functions must be measurable.
 - Non-measurable functions are not constructible in our language.
$T \leftarrow \text{Prob } T$

$E \leftarrow \text{bernoulli } E \mid \text{normal } E_1 E_2 \mid \cdots$
\hspace{2cm} distributions
\hspace{2cm} singleton distribution
\hspace{2cm} random variables
\hspace{2cm} conditional distributions
\hspace{2cm} expectation
\hspace{2cm} density functions
\hspace{2cm} \\
\hspace{2cm} \text{return } E
\hspace{2cm} \text{var } x \sim E_1 \text{ in } E_2
\hspace{2cm} \text{condition } E_1 \text{ in } E_2
\hspace{2cm} \mathbb{E}_{x \sim E_1}(E_2)
\hspace{2cm} \text{pdf } E

- **Continuous random variables!** (e.g., Prob Real)
- Semantics in terms of measure theory.
Modeling example revisited

Recall the example from before:

\[X_i \sim \text{Normal}(\theta, 1) \]
\[
\arg \max_{\theta} f(x \mid \theta)
\]
Modeling example revisited

Recall the example from before:

$$X_i \sim \text{Normal}(\theta, 1)$$

$$\arg \max_\theta f(x \mid \theta)$$

In our language:

```plaintext
let F \theta =
    var X_1 \sim \text{normal} \theta 1 \text{ in}
    var X_2 \sim \text{normal} \theta 1 \text{ in}
    var X_3 \sim \text{normal} \theta 1 \text{ in}
    return (X_1, X_2, X_3)

in

\arg \max_\theta \{ \text{pdf} (F \theta) (x_1, x_2, x_3) \mid \text{true} \}

\theta : \text{Real}
```
Modeling example revisited

Recall the example from before:

\[X_i \sim \text{Normal}(\theta, 1) \]

\[\arg \max_{\theta} f(x | \theta) \]

In our language:

\[
\text{let } F \theta = \begin{align*}
\var X_1 & \sim \text{normal } \theta 1 \text{ in} \\
\var X_2 & \sim \text{normal } \theta 1 \text{ in} \\
\var X_3 & \sim \text{normal } \theta 1 \text{ in} \\
\text{return } (X_1, X_2, X_3) \\
\end{align*}
\]

\[
\text{in} \begin{align*}
\arg \max_{\theta: \text{Real}} \{ \text{pdf} (F \theta) (x_1, x_2, x_3) | \text{true} \} \\
\end{align*}
\]

Mechanization requires a higher level of formalism.
Schemas

Logically: expression reformulation theorems

- example: $\forall a, b \in \mathbb{R}, \ a \ast b = 0 \iff a = 0 \lor b = 0$
Schemas

Logically: expression reformulation theorems

- example: $\forall a, b \in \mathbb{R}, \ a \ast b = 0 \iff a = 0 \lor b = 0$

Operationally: rewrite rules (implemented as OCaml functions)
Schemas

Logically: expression reformulation theorems
- example: $\forall a, b \in \mathbb{R}, a \cdot b = 0 \iff a = 0 \lor b = 0$

Operationally: rewrite rules (implemented as OCaml functions)

Current schema library contains 100+ schemas
- computer algebra
- propositional logic
- equation manipulation
- calculus
- optimization
- probability & statistics
The *Expectation-Maximization (EM)* schema

EM is widely used for maximum likelihood estimation (MLE).

- will require everything introduced so far
The *Expectation-Maximization (EM)* schema

EM is widely used for maximum likelihood estimation (MLE).

- will require everything introduced so far

\[
\arg \max_{\theta: \text{Real}} \text{pdf} \left(\begin{array}{c} \vdots \\
\end{array} \right) \times \rightarrow
\]
The *Expectation-Maximization (EM)* schema

EM is widely used for maximum likelihood estimation (MLE).
- will require everything introduced so far

\[
\arg \max_{\theta: \text{Real}} \text{pdf} \left(\begin{array}{l}
\text{var } Z \sim F_Z \text{ in } \\
\text{var } X \sim F_X \text{ in } \\
\text{return } X
\end{array} \right) \times \rightarrow
\]
The *Expectation-Maximization (EM)* schema

EM is widely used for maximum likelihood estimation (MLE).

- will require everything introduced so far

\[
\arg\max_{\theta: \text{Real}} \text{pdf} \left(\begin{array}{c}
\text{var } Z \sim F_Z \text{ in } \\
\text{var } X \sim F_X \text{ in } \\
\text{return } X
\end{array} \right) x \quad \rightarrow
\]

let rec loop \(\hat{\theta} = \\
\text{if } (...) \text{ then } \hat{\theta} \\
\text{else loop } \arg\max_{\theta: \text{Real}} \mathbb{E}_{z \sim C} (\log(\text{pdf } J (x, z)))
\in
\text{loop } \theta_0
\]
The *Expectation-Maximization (EM)* schema

EM is widely used for maximum likelihood estimation (MLE).

- will require everything introduced so far

\[
\arg\max_{\theta: \text{Real}} \text{pdf} \left(\begin{array}{l}
\text{var } Z \sim F_Z \text{ in } \\
\text{var } X \sim F_X \text{ in } \\
\text{return } X
\end{array} \right) \times \mapsto
\]

let rec loop \(\boldsymbol{\hat{\theta}}\) =

if (...) then \(\boldsymbol{\hat{\theta}}\)

else loop \(\arg\max_{\theta: \text{Real}} \mathbb{E}_{Z \sim C}(\log(\text{pdf } J(x, z)))\)

in

loop \(\theta_0\)

\[
J = \left(\begin{array}{l}
\text{var } Z \sim F_Z \text{ in } \\
\text{var } X \sim F_X \text{ in } \\
\text{return } (X, Z)
\end{array} \right) \quad C' = \left(\begin{array}{l}
\text{var } Z \sim F_Z \text{ in } \\
\text{var } X \sim F_X \text{ in } \\
\text{condition } X = x \text{ in }
\text{return } Z
\end{array} \right) \quad C = C'[\theta := \boldsymbol{\hat{\theta}}]
\]
The *Expectation-Maximization (EM)* schema

EM is widely used for maximum likelihood estimation (MLE).

- will require everything introduced so far

\[
\text{arg max } \theta \left(\begin{array}{l}
v \text{ar } Z \sim F_Z \text{ in} \\
v \text{ar } X \sim F_X \text{ in} \\
r \text{eturn } X
\end{array} \right) \xrightarrow{\Rightarrow} \text{let rec loop } \hat{\theta} = \\
\quad \text{if } (...) \text{ then } \hat{\theta} \\
\quad \text{else loop } \text{arg max } \theta : \text{Real } E_{Z \sim C} \text{log(pdf } J(x, z))) \\
\quad \text{in} \\
\quad \text{loop } \theta_0
\]

\[
J = \left(\begin{array}{l}
\text{var } Z \sim F_Z \text{ in} \\
\text{var } X \sim F_X \text{ in} \\
r \text{return } (X, Z)
\end{array} \right) \quad C' = \left(\begin{array}{l}
\text{var } Z \sim F_Z \text{ in} \\
\text{var } X \sim F_X \text{ in} \\
\text{condition } X = x \text{ in} \\
r \text{return } Z
\end{array} \right) \quad C = C'[\theta := \hat{\theta}]
\]

Relies crucially on symbolic operations.
Interactive algorithm assistant

Features

- enter problems
- apply schemas
- undo/redo
- combinator

Status

- can solve several textbook examples of MLE, incl. via EM
- autotuning + more sophisticated code generation is planned

Come see me for a demo!
Conclusions

- The first symbolic formalization of statistics for freely expressing statistical problems and reformulations
 - type-theoretic formalization of probability & optimization
 - continuous probability distributions

- An implementation of the language & schemas
 - the Expectation-Maximization (EM) schema
 - interactive algorithm assistant

- Future plans include incorporating feedback
 - autotuning, high-performance code generation
 - model selection, causal inference
Thank you

Fin.