
Automating Mathematical Program

Transformations

Ashish Agarwal1⋆, Sooraj Bhat2, Alexander Gray2, and Ignacio E. Grossmann1

1 Dept. of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
2 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332

Abstract. Mathematical programs (MPs) are a class of constrained op-
timization problems that include linear, mixed-integer, and disjunctive
programs. Strategies for solving MPs rely heavily on various transfor-
mations between these subclasses, but most are not automated because
MP theory does not presently treat programs as syntactic objects. In
this work, we present the first syntactic definition of MP and of some
widely used MP transformations, most notably the big-M and convex
hull methods for converting disjunctive constraints. We use an embedded
OCaml DSL on problems from chemical process engineering and oper-
ations research to compare our automated transformations to existing
technology—finding that no one technique is always best—and also to
manual reformulations—finding that our mechanizations are comparable
to human experts. This work enables higher-level solution strategies that
can use these transformations as subroutines.

Key words: mathematical programming, program transformation, dis-
junctive constraints, convex hull method, mixed-integer constraints

1 Introduction

The equations governing engineering systems rarely dictate a unique solution.
Usually, a designer needs to find the optimal solution amongst a space of feasi-
ble ones. Such constrained optimization problems are often expressed as math-
ematical programs (MPs), which consist of a numerical objective that is to be
maximized (or minimized) subject to some constraints. Solving MPs efficiently
is an important problem across science and engineering. The nature of the con-
straints allowed is a key issue affecting both the kinds of systems that can be
represented and the efficiency of algorithms. An MP is more specifically called a
linear program (LP) when the constraints and the objective are linear algebraic
equations and inequalities on the reals. A mixed-integer linear program (MILP)
additionally allows restricting variables to be integer valued, which allows ex-
pressing problems not possible in LP. We discuss a superset of these that also
allows Boolean expressions and most importantly disjunctive constraints.

Throughout this work, the term disjunctive constraint refers to a disjunction
over (in)equations involving reals, such as x ≤ 0 ∨ y ≤ 0, and is unrelated to

⋆ Currently: Dept. of Computer Science, Yale University, ashish.agarwal@yale.edu

Boolean disjunction which is a statement purely over Boolean variables. Both
are an important modeling tool. Unfortunately, most MP solvers cannot directly
accept programs with Booleans or disjunctions as input. The currently best-
known strategies reformulate the program into an equivalent MILP, for which
there are good solvers.

One such efficient reformulation technique is Balas’ convex-hull method [1].
Unfortunately, this technique presents some mechanization challenges: new vari-
ables need to be introduced, constraints must be modified, and new equations
must be added. Balas’ theory requires each disjunct to be bounded, which often is
attained by adding a lower and upper bound for every variable in each disjunct;
this increases the number of inequalities to be manipulated. In addition, one
must decide how to handle nested disjunctions. The reformulation is error-prone
not just because of the tedious algebra, but also because the resulting equations
are non-intuitive. Even on small problems, it is challenging to recognize how the
output represents the original constraint. Finally, one must of course be familiar
with the reformulation methods to apply them. Automation is clearly called for.

The reformulations we present have been widely used by experts for many
years. However, there has been limited to no support for them in MP software
tools. We believe this is because current MP theory focuses on the study of
the numerical behavior of algorithms and does not treat programs as syntactic
objects. MPs are defined in a canonical matrix form, which does not support
basic operations required for automating transformations such as variable intro-
duction and compositional construction of programs. We demonstrate that the
formal methods of language design capably address long standing needs in the
mathematical programming community. Our contributions are the following:

– We provide the first, to our knowledge, formalization of the syntax, type
system, and semantics of an MP language. The core theory contains useful
constructs such as Boolean expressions and disjunctive constraints that al-
low practitioners to formulate programs in a more natural style and, more
importantly, enables higher-level analysis.

– Enabled by this, we automate some important program transformations from
our richer language to forms accepted by modern solvers. This is the primary
contribution of the paper, and we hope to convince the reader that imple-
menting them without a formal methods perspective would be difficult. The
convex-hull and big-M methods are the most interesting, and we also provide
others that are of practical importance.

– Finally, we provide an OCaml embedded domain-specific language (EDSL)
for succinct construction of MPs, and a framework for applying the vari-
ous reformulations. Our software outputs programs in the popular AMPL
language and the industry standard MPS format, allowing us to pass the
generated programs to existing solvers and study their behavior. We find
that our software generates programs comparable to what a human expert
would produce, and that no one technique always produces the most effi-
cient reformulation, making it important to have a system that allows open
experimentation.

2 Mathematical Programming

The standard definition of a linear program is

max
{

cT x | Ax ≤ b, x ∈ R
n
}

(1)

where c is a n × 1 dimensional coefficient vector, x is an n × 1 vector of real
valued variables, A is an m × n coefficient matrix, and b is an m × 1 vector of
constants. Thus, cT x is a scalar, and the matrix inequality Ax ≤ b represents m
individual inequalities. The inequalities represent a polyhedron, such as either
region R1 or R2 in Figure 1a, and is called the feasible space of the LP.

Representing discrete choices requires a more expressive language than LP.
We need a language that allows expressing not just R1 or R2 separately but their
union R1 ∪ R2. There are two rather distinct methods for accomplishing this.
The first is to enrich LP with a discrete type, such as is done with mixed-integer
linear programming (MILP). In MILP, variables may be integer or real valued.
The standard definition [2] is

max{cT x + hT y | Ax + Gy ≤ b, x ∈ R
n, y ∈ Z

p} (2)

where x and y represent vectors of real and integer variables, respectively.
However, integers are often not an intuitive model of discrete choice, and be-

come prohibitively difficult for larger problems. Alternatively, LP can be enriched
with disjunctive constraints, which lead to more compact and comprehensible
models [1, 3]. The canonical matrix form of a disjunctive constraint is

[

A1x ≤ b1
]

∨
[

A2x ≤ b2
]

(3)

We still do not have Boolean expressions, nor disjunctive constraints that
are not in disjunctive normal form (DNF), nor an obvious way to insert new
constraints or extract specific ones to manipulate. In short, these definitions
do not provide an abstract syntax that can be operated on formally. These
shortcomings are addressed in the following section.

3 A Language for Mathematical Programming

Our mathematical programming language consists of refined types ρ, expres-
sions e, constraints c (called propositions in logic), and programs p:

ρ ::= [rL, rU] | [rL,∞) | (−∞, rU] | real | 〈rL, rU 〉 | 〈rL,∞) | (−∞, rU 〉

| int | {true} | {false} | bool (4a)

e ::= x | r | true | false | not e | e1 or e2 | e1 and e2

| −e | e1 + e2 | e1 − e2 | e1 ∗ e2 (4b)

c ::= T | F | isTrue e | e1 = e2 | e1 ≤ e2 | c1 ∨ c2 | c1 ∧ c2 | ∃x :ρ � c (4c)

p ::= maxx1:ρ1,...,xm:ρm
{e | c} (4d)

Υ ::= • | Υ, x :ρ (4e)

A full discussion of the straightforward type system and semantics is available
in [4]; here we present a high-level overview.

Programs A mathematical program p consists of an objective e that must be
maximized subject to a constraint c. Minimizing is equivalent to maximizing
−e. This definition is similar to (2) but the objective and constraint are not in
a matrix form.

Expressions Expressions are either numeric or Boolean. They include variables,
rational constants r, Boolean constants, and the usual numeric and Boolean
operators. We wish only to support linear terms, and so the restriction on e1 ∗e2

is that e1 has no free variables. Nonlinear programs are certainly important, but
the transformations we are focusing on apply only to linear constraints.

Constraints The most common constraints are conjunctions or disjunctions
over (in)equations on the reals. Disjunction c1∨c2 is the key novelty. Conjunction
alone provides a language for expressing what is normally referred to as a system
of linear equations in linear algebra.

In addition, we allow Boolean constraints in the form isTrue e, where e
must be an expression of type bool. We distinguish between Boolean truth
versus truth of numeric propositions (true and false versus T and F). This
type distinction, embodied as a syntactic distinction in our definition, is essential
since the algorithms for solving these classes of propositions are entirely different.
The convex-hull and big-M methods are useful only for the disjunctive constraint
c1∨c2 and should not be applied to the Boolean expression e1 or e2. Additionally,
Boolean expressions can be negated, but there is no negation at the constraint
level because MPs do not allow strict inequalities.

Although it is not common in the MP literature, we require that variables be
explicitly introduced with an existential quantifier. This clarifies the semantics
and provides the practical benefit of locally scoped variables. Universal quanti-
fiers would extend our language to include semi-infinite programs, an interesting
but less developed class of problems. Variables introduced at the program level
behave as existentially quantified; the only distinction being that they can also
be used in the objective.

Refined Types We use refined types—instead of simply using bool and real—
so that we can provide a treatment of bounds (needed for both the convex-hull
method and the big-M method) and to be able to represent integers classically
(integers are a subset of the reals in conventional mathematics). Square brackets
denote real intervals; angle brackets denote integer intervals.

Context We keep track of variable bounds with a refined type context, which
is a list of variables associated with their bounds. This is more informative than
the usual context used in typing judgments. It provides not just variables’ types
but also retains knowledge of restrictions on the variables’ values.

Finally, we define free variables (FV (e), FV (c)) and capture-avoiding sub-
stitution ({e/x} e′, {e/x} c) in the usual way.

Computation with Real Numbers Mathematical programs involve real
numbers, which raises the issue of computing over them. This is a fundamental
challenge being pursued by others in various contexts [5, 6]. It does not however
affect the transformations we provide because they are purely syntactic manipu-
lations, and all real expressions are carried through unaltered. We were careful to
include only rational constants instead of reals in the syntax, but this is due to
an unrelated issue: it is a specification of MILPs that constants be rational, else
an optimum may not exist [2]. Despite the MP community’s classical treatment
of reals, it is interesting to note that their desired interpretation of disjunction
and existential quantification is certainly constructive. It is expected that any
MP solver explain how the constraints are satisfied by providing witnesses for all
variables and information on which disjoint region the optimum was found in.

4 Transforming Syntactic Constructs

The class of programs covered by p include disjunctive constraints and Booleans,
but the best solvers accommodate only mixed-integer linear programming (MILP)
constraints which do not allow either of these forms. We pursue the standard
strategy of transforming the richer constraint forms to lower-level MILP con-
straints, with the important distinction that our definitions lead to a software
implementation.

We first turn our attention to transformations for disjunctive constraints
c1 ∨ c2. The methods make no use of standard logical laws, such as DeMorgan’s
(recall constraints cannot be negated). The general idea is that the dichotomy
expressed by disjunction is embodied instead in the discrete nature of integer
variables. An integer binary variable yi ∈ {0, 1} is associated with each ith

disjunct of a disjunction, and the disjunction is replaced by conjunction. Just
one yi is required to be 1 and only the constraints of the corresponding disjunct
are enforced. Disjuncts j 6= i are then reduced to tautologies. We now consider
some specific methods; all preserve constraint linearity, which is important for
solver efficiency.

Big-M Transformation. The big-M method states that (3) can be reformu-
lated into the equivalent mixed-integer linear constraints

A1x − b1 ≤ M1(1 − y1)
A2x − b2 ≤ M2(1 − y2)

y1 + y2 = 1
(5)

where yi ∈ {0, 1} and M i are the so called big-M parameters. These are known
upper bounds on Aix − bi. Consider y1 = 1 and y2 = 0. The second inequality
reduces to A2x − b2 ≤ M2, which is trivially satisfied because, by definition,
M2 is an upper bound of its left-hand side. Effectively, the second disjunct is
disregarded. The first inequality reduces to A1x − b1 ≤ 0, which is the original
first disjunct. Conversely, only the second disjunct is enforced when y1 = 0.

The computational efficiency of this method is crucially dependent on the
choice of the big-M parameters, of which there are quite a few since M1 and

M2 are vectors. Casual users often set them to some arbitrarily large value to
avoid the effort of computing them. Even experts often resort to this because
it preserves model modularity: changes to a variable’s bounds would require
searching through their entire program to verify that all the M ’s are still valid.
A liberally large value mitigates this issue. In contrast, our automated solution
preserves modeling simplicity while providing computational efficiency. We use
interval arithmetic to compute tight big-M parameters automatically.

Our definition of the big-M method requires two auxiliary judgments to be
first introduced. First, we need an operation for computing big-M parameters.
Let Υ ⊢ e ⇋ [r̄L, r̄U] be the judgment that computes lower and upper bounds r̄L

and r̄U for the expression e in the refined context Υ , where r̄L and r̄U are from
the affinely extended rationals; they may take on the values of −∞ and ∞. Its
definition uses interval arithmetic over unary negation and the binary operators
+, −, and ∗ by propagating derived bounds from subterms to enclosing terms.
For example, under the context x : [−1, 2], y : [0, 100], the expression −5 ∗ x + y
generates the interval [−10, 105].

Second, we define an operation to convert an inequality to its big-M form.
Let Υ ⊢ e⊗ c ⇀ c′ be the judgment that rewrites constraint c to its big-M form
c′, where the e will supply the necessary 1 − y term. Its definition is

Υ ⊢ e1 − e2 ⇋ [r̄L, rU]

Υ ⊢ e ⊗ e1 ≤ e2 ⇀ e1 ≤ e2 + e ∗ rU

(6a)

{

Υ ⊢ e ⊗ cj ⇀ c′j
}

j∈{A,B}

Υ ⊢ e ⊗ cA ∧ cB ⇀ c′A ∧ c′B
(6b)

Υ, x : ρ ⊢ e ⊗ c ⇀ c′

Υ ⊢ e ⊗ ∃x : ρ � c ⇀ ∃x : ρ � c′
(6c)

The first rule is the interesting one. It converts the inequality e1 ≤ e2 by comput-
ing bounds for e1 − e2, where the upper bound is the desired big-M parameter.
The lower bound is not needed. This upper bound multiplied by e, which will
be of the form 1 − y, is then added to the appropriate side of the inequality.
Conjunctive constraints and existential constraints recurse into their subterms,
where in the latter case we add the introduced variable to the context. The other
cases are not needed as they will be compiled away beforehand. A finite upper
bound on e1−e2 must exist. Our software assures this and prints an informative
message when a finite bound cannot be computed.

Finally, we define the main big-M compiler. Let Υ ⊢ c
bigm

7−→ c′ be a judgment
converting a disjunctive constraint c to an MILP constraint c′ via the big-M
method:

{

Υ ⊢ cj
prop

7−→ c′j

}

j∈{A,B}
Υ

ctxt

7−→ Υ ′
{

Υ ′ ⊢ (1 − yj) ⊗ c′j ⇀ c′′j
}

j∈{A,B}

Υ ⊢ cA ∨ cB
bigm

7−→ ∃yA : 〈0, 1〉 � ∃yB : 〈0, 1〉 � (yA + yB = 1) ∧ (c′′A ∧ c′′B)
(7)

First, the disjuncts themselves are compiled using the overall constraint compiler
prop

7−→, which merely recurses on subterms bottom-up, converting any Boolean

expressions and disjunctions to MILP form using the transformations described
in this section. Then, we convert the context with the context compiler, which
replaces occurrences of bool with 〈0, 1〉. This is necessary for the transformation
of Boolean expressions and is motivated subsequently. For each disjunct cj we
introduce a corresponding binary variable and rewrite cj to a big-M form. Finally,
the overall result is constructed with appropriate introduction of the y’s, the
equation forcing the sum of y’s to be 1, and the original disjunction cA ∨ cB

replaced with c′′A ∧ c′′B .

Indicator Constraint Transformation Recently, the CPLEX system has
been extended to natively handle a new constraint form known as an indicator

constraint. They are of the form (y = k) ⇒ (e1 op e2) where y is a binary
variable, k ∈ {0, 1}, and op ∈ {≤,=,≥} A disjunctive constraint can be written
as two indicator constraints whose heads are mutually exclusive.

Though we find indicator constraints less natural than disjunction in many
cases (e.g. they cannot be nested), CPLEX can handle them in a way that avoids
numerical problems when users choose liberally large big-M parameters. Both
numerical accuracy and computation times are substantially improved in many
problems3. To utilize this feature, we have implemented a variant of our big-M
transformation which generates indicator constraints from disjunction.

x1

x2

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

0

R1

R2

(a) Feasible region.

x1

x2

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

0

(b) Big-M relaxation.

x1

x2

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

0

(c) convex-hull relaxation.

Fig. 1: A disjunctive region and two reformulations.

Convex-Hull Transformation We mentioned that the big-M parameters sig-
nificantly affect the computational efficiency of the resulting program. This is
because of a basic step in MILP algorithms involving relaxation, a term that
refers to allowing integer variables to take any continuous value. The big-M
parameter affects the size of the feasible space for these relaxations, and thus
computational efficiency. Figure 1b shows this space for the big-M reformulation

3 Based on comments from the ILOG company’s website. We are not aware of any
published literature on indicator constraints.

of an example constraint R1 ∨ R2 with the best possible values for the big-M
parameters. The convex-hull method is able to produce an even tighter relax-
ation, shown in Figure 1c. Indeed this is the tightest possible relaxation, the
convex-hull of the original disjunctive space, and hence the name of the method.
This often leads to even more computationally efficient programs, but is unfor-
tunately substantially more involved. In fact, the number of new variables and
equations that must be generated can be so large that it offsets the benefits of its
tighter reformulation in some problems. Thus, it is important for MP software
to support a breadth of transformations, as there is no single best choice.

The convex-hull method states that (3) can be transformed into the equiva-
lent mixed-integer constraints

A1x̄1 ≤ b1y1

A2x̄2 ≤ b2y2

y1 + y2 = 1
x = x̄1 + x̄2 (8)

where yi ∈ {0, 1}. This reformulation is valid only when the inequalities repre-
sent bounded regions. The method appears speciously simple when stated on a
canonical matrix form. However, in practice models are never written in matrix
form, and there is no uniform structure to the equations involved Additionally,
various details are omitted such as the need to declare the new variables and
add constraints bounding each variable within disjuncts.

The basic idea is to disaggregate the disjuncts. In each of the ith disjuncts,
vector x has been replaced with a new vector of variables x̄i. This causes the in-
equalities of each disjunct to be disaggregated, meaning they have no variables in
common. For this reason, the x̄i’s are called the disaggregated variables. Finally,
the original x is defined to be a sum of the new x̄i’s, and the y’s are required
to sum to 1. We will have to provide judgments for each of these operations, as
well as for the above mentioned omissions in this informal definition.

Since our compiler works on non-DNF forms and allows Booleans, we should
more precisely state that it is motivated by the convex-hull method. When the
disjuncts are each a conjunction of linear equations and inequalities on the reals,
it is Balas’ convex-hull method. It is so only for each disjunction separately.
When there are multiple disjunctions, i.e. a conjunction of disjunctions, it does
not produce the convex-hull overall.

We begin with the main judgment Υ ⊢ c
cvx

7−→ c′, followed by the several
auxiliary judgments required. The rule is

{

Υ ⊢ cj
prop

7−→ c′j

}

j∈{A,B}
Υ

ctxt

7−→ Υ ′

{

Υ ′ ⊢ c′j ⊸
x

j

1
,...,x

j
m

c′′j

}

j∈{A,B}

{

yj
⊛

{

x
j/x

}

c
′′

j →֒ c′′′j

}

j∈{A,B}

Υ ⊢ cA ∨ cB
cvx

7−→

(

∃x
A :ρ � ∃x

B :ρ � ∃yA :〈0, 1〉 � ∃yB :〈0, 1〉�
(

x = x
A + x

B
)

∧
(

yA + yB = 1
)

∧ (c′′′A ∧ c′′′B)

) (9)

The notation used assumes the context Υ is x1 : ρ1, . . . , xm : ρm. For each xj ,
two disaggregated variables xA

j and xB
j are created, which must not be free in

cA ∨ cB . Also, two binary variables yA and yB are created, such that the chosen

names are not free in cA ∨ cB and are also unique from the xA
j ’s and xB

j ’s. We
have also used vector notation in the meta-language: ∃x :ρ refers to a sequence
of existential quantifiers introducing multiple variables each with their own type,
x = x

A + x
B refers to the conjunction of equations for each individual x, and

{xj/x}c
′′

j refers to the substitution of a vector of variables x
j for their respective

variables in x. The constraint output by (9) can roughly be seen to correspond
to the matrix reformulation (8).

First, the disjuncts are themselves transformed, producing the MILP con-
straints c′A and c′B , and then the context is transformed. Next, bounding con-
straints are added to each disjunct using ⊸, and the disaggregated constraints
are created by using →֒. These themselves require some auxiliary judgments that
we define next.

To add constraints bounding a variable, we introduce a judgment that con-
verts a refined type declaration to a constraint. Let x :ρ ≃ c return the bounding
information provided by x : ρ in the form of a constraint c. The definition of ≃
is by case on the form of ρ,

x : [rL, rU] ≃ rL ≤ x ∧ x ≤ rU

x : [rL,∞) ≃ rL ≤ x
x : (−∞, rU] ≃ x ≤ rU

x :real ≃ T

x :〈rL, rU 〉 ≃ rL ≤ x ∧ x ≤ rU

x :〈rL,∞) ≃ rL ≤ x
x : (−∞, rU 〉 ≃ x ≤ rU

x :int ≃ T

(10)

The first rule states that the declaration x : [rL, rU] corresponds to specifying
bounds with the constraint rL ≤ x ∧ x ≤ rU . There is just a single inequality
when the variable is bounded on only one side. The type declaration x : real
generates the propositional truth constant T, which means this declaration does
not constrain the values of x. Definitions for integer types are similar, and the
Boolean cases are omitted as they will not be needed.

Let Υ ⊢x1,...,xm
c ⊸ c′ be a quaternary judgment adding to c bounding

constraints for all the given variables, returning the result as c′. Its definition is

{xj :ρj ≃ cj}
m

j=1

Υ ⊢x1,...,xm
c ⊸ (c1 ∧ · · · ∧ cm ∧ c)

(11)

where Υ (xj) = ρj for j = 1, . . . ,m.
Finally, let e ⊛ e1 →֒ e2 be a judgment that multiplies e to the constant part

of e1, producing e2. For example, (1 + 2) ∗ (3 + 4 + (5 + 6) ∗ x) gets converted to
(1+2)∗ (3∗e+4∗e+(5+6)∗x). The judgment e⊛c1 →֒ c2 is the corresponding
judgment for constraints, recursing on subterms in a straightforward way. These
judgments correspond to the multiplication of the right hand sides of the matrix
inequations by binary variables in (8).

Boolean Expressions We convert Boolean expressions to linear inequalities
involving only binary variables by first converting them to conjunctive normal
form (CNF), then rewriting the clauses—which are in disjunctive literal form
(DLF)—as integer constraints in the usual way, and finally lifting Boolean and to

constraint-level ∧. For example, (y and z) or not x becomes (y or not x) and (z
or not x) in CNF, which is then converted to the constraint (y + 1 − x ≥ 1) ∧
(z + 1− x ≥ 1). The types of the variables are changed from bool to 〈0, 1〉 with

the refined context compiler
ctxt

7−→.

Program Transformation The objective of a MP must be of type real, so
it is already in MILP form and need not be transformed. The types and con-
straints are transformed using their respective procedures. Essentially, Boolean
expressions and disjunctive constraints are replaced by pure MILP equivalents
in a bottom-up fashion.

5 Results

We now present examples from chemical process engineering and operations
research that we model using the intuitive Boolean and disjunctive constraints
supported by our software. We compare our automated transformations to both
manually performed transformations, and an existing automated solution. We
find that our automated transformations are comparable to those done by a
human expert. We also find that no single transformation always produces the
most efficient reformulation, so it is advantageous to have a system such as
ours in which the high-level MP can be stated once, and then different solution
strategies can be pursued.

Implementation We have implemented our object language as an embedded
domain-specific language (EDSL) in OCaml. Once a program is specified in our
EDSL, one of the various constraint transformations we have defined can be
applied selectively or to the whole program. The transformed program, whether
a pure MILP or one enhanced with indicator constraints, can be printed to the
industry-standard MPS format or the AMPL modeling language. All source code
is freely available from the first author’s website.

Performance Metrics We look at the following metrics:

– Number of continuous variables, number of constraints. These give a rough
picture of the potential computational difficulty of the program. Indexed
variables are distinct from each other, e.g. x1, . . . , xn counts as n variables.

– Number of discrete variables. This is especially relevant to computational
complexity because solvers spend a large portion of their time branching on
different possible values of discrete variables.

– CPU time needed for solving. This of course is the primary metric of interest.
However, the other metrics give a better picture of what the transformations
are actually doing. All experiments were run on a machine running Linux
2.6.18 with 8GB of RAM, 4GB of swap space, and eight 2.6GHz Intel Xeon
processors with 4MB caches.

5.1 Comparison of Automated Solutions

First we compare our transformations to one of only a few existing automated
means of solving MPs that use Booleans and disjunction. We use an example
inspired by problems from chemical process engineering.

Consider a simple switched flow process: a tank is being filled by two pumps,
α and β, whose flow rates switch depending on the mode the pump is in, which
is affected by other requirements of the system. Running each pump incurs
different costs in each mode. In addition, the tank is being emptied continuously
at a constant rate. There are several constraints: the material level in the tank
must remain between the minimum and maximum levels; pump α must not be
run longer than a certain length of time to avoid over-heating; and so on. We
wish to study how the material level changes over time and to minimize the cost
of running the system for Tmax time units. The most natural formulation of the
problem involves disjunctive constraints and Boolean variables. For instance, we
have constraints that govern the transition dynamics of pump α and enforce the
definition of “dummy” transitions (where the pump actually does not change
mode):

(* disjunction over transitions of α *)

conj(I
−n, λi →

(isTrue(Y Y (α,i)) ∧ ĉ(α,i) = 0.0 ∧ r̂(α,i) = 0.0)

∨ (isTrue(Z(α,on ,off ,i)) ∧ ĉ(α,i) = 0.0 ∧ r̂(α,i) = -R(e,i))

∨ (isTrue(Z(α,off ,on ,i)) ∧ ĉ(α,i) = 50.0 ∧ r̂(α,i) = -R(e,i)

∧ R(e,i) ≥ 2.0))

(* definition of Y Y , which indicates dummy transitions *)

conj(I
−n,λi → isTrue(Y Y (α,i) ⇔ Z(α,on ,on ,i) || Z(α,off ,off ,i)))

∧ conj(I
−n,λi → isTrue(Y Y (β,i) ⇔ Z(β,hi ,hi ,i) || Z(β,lo ,lo ,i)))

This code is directly from our EDSL; only operators, literals, and variable names
have been replaced with more mathematical typesetting for readability. The conj
function implements a meta-level indexed conjunction operator. The constraint
for the transition dynamics has several cases; one of them is a special case for
when a dummy transition occurs. Modeling such logical conditions between dis-
juncts of real inequations would be unwieldy without Booleans or disjunction.
Full details on the example can be found in [4].

To examine computational efficiency, we will take the MP for the switched
flow process and reformulate it to MILP form using the different techniques
and then solve the resulting MILP programs using ILOG’s CPLEX solver—a
widely used, efficient solver for, among other things, LP and MILP problems.
We compare four transformation strategies:

– Three are our automations of the big-M, convex-hull, and indicator con-
straint transformations. Only one input specification, coded in our EDSL
and compiled with different options, is needed to produce all three.

– The fourth is CPLEX’s Concert Technology. CPLEX offers a C++ API to
their solver which allows the use of objects and overloaded operators to write

down models in an intuitive manner. Booleans and logical conditions over
linear inequalities are automatically transformed into equivalent forms that
use indicator constraints. The software is proprietary and their conversion
to indicator constraints likely differs from the one we described in Section 4.

We do not compare to other software because either they do not support Boolean
and disjunctive constraints or they call out to CPLEX making the comparison
redundant. Mosel, another popular MP software, has an extension called Kalis
that does support disjunctions, but only over finite domain variables (not reals).

The methods perform largely as expected: tighter formulations are solved
faster (Table 1). Indeed, convex-hull is the fastest formulation despite gener-
ating the largest number of constraints. As expected, the big-M method uses
the same number of binary variables as the indicator constraint transformation,
but needs a larger number of constraints because it handles equality constraints
as a pair of inequalities, while the indicator constraint transformation handles
equalities directly. Curiously, the Concert formulation introduces more binary
variables than the convex hull method, more indicator constraints than our indi-
cator constraint transformation, and is the slowest. Overall, we can see that for
this example our transformations perform reasonable reformulations that in fact
outperform an existing automated transformation provided by a state-of-the-art
solver.

Method #vars (#binary) #constr. (#IC) solve time (sec)

flow-Concert 1061 (874) 1080 (718) 36.85
flow-IC 477 (291) 1001 (438) 11.60
flow-BM 477 (291) 1198 3.37
flow-CH 1194 (631) 2747 1.09

pack12-IC 289 (264) 342 (264) 1.83
pack12-BM 289 (264) 342 1.22
pack12-CH 1345 (264) 2718 168.38
pack12-BM-expert 289 (264) 342 1.82
pack12-CH-expert 1345 (264) 1662 149.57

pack21-IC 883 (840) 1071 (840) 24.44
pack21-BM 883 (840) 1071 55.01
pack21-CH 4243 (840) 8631 991.68
pack21-BM-expert 883 (840) 1071 29.56
pack21-CH-expert 4243 (840) 5271 ≥ 3600.00

Table 1: Running times and program sizes of MPs compiled via different methods.
Transformations: IC = indicator constraint, BM = big-M, CH = convex-hull, Concert
= CPLEX Concert, expert = human expert. Examples: flow = switched flow process,
packN = strip packing with N rectangles.

5.2 Comparison of Human Expert vs. Automated Solutions

The convex-hull method can perform poorly on problems with a large number of
disjunctions. We investigate this with the strip packing problem. Strip packing
involves packing n rectangles without rotation or overlap into a strip of width
W that is unbounded to the right while attempting to minimize the length of
the strip needed to pack the rectangles. This is a frequently studied problem and
we have available reformulations done manually by experts, which allows us to
compare our automatically generated programs with expertly generated ones.
The constraints in strip packing ensure that the length of the strip extends past
the end of each rectangle and that the rectangles do not overlap (i.e. at least
one of: are to the left/right of one another or above/below one another):

conj(I, λi → length ≥ x(i) + l(i)) ∧
conj(I, λj → conj(1--(j-1), λi →

x(i) + l(i) ≤ x(j) ∨ x(j) + l(j) ≤ x(i) ∨
y(i) - h(i) ≥ y(j) ∨ y(j) - h(j) ≥ y(i)))

For our experiments, we implemented the MP form of strip packing with
our EDSL and compared it to reformulations manually performed by an expert
of both the big-M and convex-hull methods. The manual reformulations were
taken from [7], and we used them verbatim, with no modifications. We then ran
the reformulations on a medium problem consisting of 12 rectangles and a large
problem consisting of 21 rectangles.

The results show that convex-hull is indeed not the optimal solution tech-
nique in all scenarios. The number of constraints and variables outweighs any
benefits from having a tight formulation per disjunction. Also, we can see that
the automatic versions of the big-M and convex-hull transformations are on par
with the expertly coded versions. The number of binary variables is equal across
all methods because they all introduce one binary variable per disjunct, and
there are no Boolean variables in the source program. Many of the numbers are
identical between the expertly coded and automated versions, as expected with
the simple program structure of strip packing. Also, the expertly coded convex-
hull method contains fewer constraints because the expert is able to reason that
some constraints are redundant given their bounds, e.g. 0 ∗ y ≤ xi is redundant
if xi has been declared to be nonnegative.

In general, it is hard to tell a priori which methods will work well on a given
program, so it is useful to have a tool such as ours that enables experimentation
without the manual overhead. In fact, anecdotal evidence suggests that once the
object language has been properly formalized, adding reformulations is quite
easy, so there is a lower barrier to trying new ideas.

6 Related & Future Work

Egon Balas first described the convex-hull method in a technical report [1], which
was made available in published form much later [8]. The theory presented there
has had significant impact on MILP algorithms. Although Balas acknowledged

that disjunctive constraints are useful for modeling, the focus has been on the
insights they provide to more computationally efficient formulations. Thus, those
working on MP theory have had little motivation to automate transformations
and have not considered the differences arising from programs written in non-
matrix forms. Raman and Grossmann popularized this method amongst the
chemical processing industry and demonstrated that complex real-world prob-
lems could be modeled effectively [3]. They also included the use of Boolean
constraints, and provided a method for tying these to disjunctive constraints.

Vecchietti and Grossmann describe an implementation of this alternative
formulation with similar goals to this work in a software called LogMIP [9],
implemented as an extension of the GAMS language. They support the convex-
hull method, but it is not difficult to find examples where the software provides
erroneous answers [4], and the semantics of the input language are rather unclear.
It is our hope that the theory developed in this work can be employed as a
foundation for future development of LogMIP.

There exist numerous transformations for MPs in addition to the big-M and
convex-hull methods [7, 10]. Many are related to forms other than disjunctive
constraints and so we feel our syntactic formulation can have wider benefits.
Nemhauser and Wosley, among others, discuss the importance of cuts [2], which
our syntactic foundation should be able to support. Hooker discusses the promis-
ing idea of employing constraint programming (CP) techniques to solve math-
ematical programs [11]. One of the challenges for these efforts has been that
traditional MP theory does not allow referring to constraints as objects which
is essential to CP. Our syntactic formulation immediately provides this. Brand
et al. describe a system for exploring alternate linearizations of constraint pro-
grams, including the big-M method [12]. Like many other CP techniques, they
only deal with finite-domain variables.

We have compared our software to CPLEX4, which is considered the state-
of-the-art MILP solver. In addition, with respect to the language features we are
considering, its API is the most expressive. It supports Booleans and disjunctive
constraints to the full generality that we do. It also provides a syntactic conver-
sion of these (to indicator constraints) and was thus the most appropriate tool
for comparing our transformations to. Note however that CPLEX has numerous
other features making it an effective algorithm. Our goal is to supplement those
capabilities with operations benefiting from a syntactic perspective.

There are other works that focus specifically on language design. The most
widely used are GAMS [13], AMPL [14], Mosel [15], and OPL [16]. Kallrath
provides a comprehensive overview [17]. All these support indexing, an essential
requirement of any good MP language. It is interesting that although these are
the leading languages, they have limited or no support for important features
such as Booleans and disjunctive constraints. Although our goal in this work
was not to provide a superior object language, we believe our use of formal
programming language methods can lead to better languages.

4 http://www.ilog.com

Acknowledgments We thank Robert Harper (Computer Science, Carnegie
Mellon University) for his essential contributions to this work.

References

1. Balas, E.: Disjunctive programming: Properties of the convex hull of feasible points.
Technical Report MSRR 348, Carnegie Mellon University (1974)

2. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, NY (1999)

3. Raman, R., Grossmann, I.E.: Modelling and computational techniques for logic
based integer programming. Computers & Chemical Engineering 18(7) (1994)
563–578

4. Agarwal, A.: Logical Modeling Frameworks for the Optimization of Discrete-
Continuous Systems. PhD thesis, Carnegie Mellon University (2006)

5. Potts, P., Edalat, A., Escardo, M.: Semantics of exact real arithmetic. In: LICS
’97., 12th Annual IEEE Symp. on Logic in Computer Science, Warsaw (1997)
248–257

6. Nanevski, A., Blelloch, G., Harper, R.: Automatic generation of staged geometric
predicates. In: Proceedings of the sixth ACM SIGPLAN International Conference
on Functional programming, ICFP 2001. ACM, Florence, Italy (2001) 217–228

7. Sawaya, N.: Reformulations, Relaxations and Cutting Planes for Generalized Dis-
junctive Programming. PhD thesis, Carnegie Mellon University (2008)

8. Balas, E.: Disjunctive programming: Properties of the convex hull of feasible points.
Discrete Applied Mathematics 89(1-3) (1998) 3–44

9. Vecchietti, A., Grossmann, I.E.: Modeling issues and implementation of language
for disjunctive programming. Computers & Chemical Engineering 24(9–10) (2000)
2143–2155

10. Liberti, L.: Techniques de Reformulation en Programmation Mathématique.
L’habilitation à diriger des recherches (hdr), Université Paris IX, Lamsade (2007)
Language: English.

11. Hooker, J.N.: Logic-based methods for optimization: combining optimization and
constraint satisfaction. Wiley-Interscience series in discrete mathematics and op-
timization. John Wiley & Sons (2000)

12. Brand, S., Duck, G.J., Puchinger, J., Stuckey, P.J.: Flexible, rule-based constraint
model linearisation. In: Tenth International Symposium on Practical Aspects of
Declarative Languages. (2008)

13. Bisschop, J., Meeraus, A.: On the development of a general algebraic modeling
system in a strategic-planning environment. Mathematical Programming Study
20(Oct) (1982) 1–29

14. Fourer, R., Gay, D.M., Kernighan, B.W.: A modeling language for mathematical
programming. Management Science 36(5) (1990) 519–554

15. Colombani, Y., Heipcke, T.: Mosel: an extensible environment for modeling and
programming solutions. In Jussien, N., Laburthe, F., eds.: 4th Intl. Workshop on
Integration of AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems (CP-AI-OR’02), Le Croisic, France (2002) 277–290

16. van Hentenryck, P., Lustig, I.: The OPL optimization programming language.
MIT Press, Cambridge, Mass. (1999) With contributions by Irvin Lustig, Laurent
Michel, and Jean-Francois Puget.

17. Kallrath, J.: Modeling languages in mathematical optimization. Volume 88 of
Applied optimization. Kluwer Academic Publishers, Boston (2004)

