Mechanizing Optimization and Statistics J

Ashish Agarwal
Yale University

IBM Programming Languages Day
Watson Research Center
July 29, 2010

Ashish Agarwal () 1/34

Acknowledgments

o Optimization:

Ignacio Grossmann (Carnegie Mellon)
Nick Sawaya and Vikas Goel (Exxon Mobil)

@ Indexing:
Bob Harper (Carnegie Mellon)

@ Statistics:
Sooraj Bhat and Alex Gray (GeorgiaTech)
Rich Vuduc (GeorgiaTech, linear algebra and autotuning)

Ashish Agarwal () 2 /34

Linear programs (LP)

Dantzig (1982)

O = N W b

X2

T X1 Z 1.0

] xp > 1.0

k x1+x <5.0
T T T T X1

01 2 3 4

Ashish Agarwal ()

3/34

Linear programs (LP)

Dantzig (1982)

O = N W b

X2

i max x; — X»

T X1 Z 1.0

] xp > 1.0

k x1+x <5.0
T T T T X1

01 2 3 4

Ashish Agarwal ()

3/34

Linear programs (LP)

Dantzig (1982)

O = N W b

X2

T max x; — Xp

] x1 > 1.0

1 Xo > 1.0

7 x1+x <5.0
T T T T X1

01 2 3 4

Cannot represent multiple polyhedra.

Ashish Agarwal ()

3/34

Declaring discrete choice — with disjunction

Disjunctive programs (DP), Balas (1974), Jeroslow and Lowe (1984), Raman and Grossmann (1994)

O = N Wk ot 3

T2

R2

1

Ashish Agarwal ()

Xlzl
XQZ].
x1+x <5

Rl

4/34

Declaring discrete choice — with disjunction

Disjunctive programs (DP), Balas (1974), Jeroslow and Lowe (1984), Raman and Grossmann (1994)

O = N Wk ot 3
PR S TR T T T

8
N

Rl

R2

1

0123456738

Xlzl
XQZ].
x1+x <5

Rl

@ Language of DP extends LP with disjunction

Ashish Agarwal ()

5§X1§8
4§X2§7

R2

|

4/34

Declaring discrete choice — with disjunction

Disjunctive programs (DP), Balas (1974), Jeroslow and Lowe (1984), Raman and Grossmann (1994)

O = N Wk ot 3
PR S TR T T T

8
N

Rl

R2

1

0123456738

Xlz].
XQZ].
x1+x <5

Rl

@ Language of DP extends LP with disjunction

@ Few algorithms for solving DPs directly.

Ashish Agarwal ()

5§X1§8
4§X2§7

R2

|

4/34

Declaring discrete choice — with integers
Mixed-integer linear programs (MILP)

@ Basic idea: multiply terms by y € {0,1}

0<y<l1
x < 3.0y +2.0(1 —y)

o if y=1, then x < 3.0
o if y=0, then x < 2.0

Ashish Agarwal ()

5/34

Declaring discrete choice — with integers
Mixed-integer linear programs (MILP)

@ Basic idea: multiply terms by y € {0,1}

0<y<l1
x < 3.0y +2.0(1 —y)

o if y=1, then x < 3.0
o if y=0, then x < 2.0
@ Language of MILP extends LP with the integer type

Ashish Agarwal () 5/ 34

Declaring discrete choice — with integers
Mixed-integer linear programs (MILP)

Basic idea: multiply terms by y € {0,1}

0<y<l1
x < 3.0y +2.0(1 —y)

if y =1, then x < 3.0
if y =0, then x <2.0
Language of MILP extends LP with the integer type

Express as DP Convert to MILP

I: S
Goa (intuitive) —> (accepted by solvers)

Ashish Agarwal ()

5/34

Multiple Transformation Techniques Available

Choice affects computational efficiency

best big-M reformulation convex-hull reformulation
g} T2

O R N Wk Uto
1

SO = N Wk o
1

1

1

Ashish Agarwal () 6 /34

System overview

disjunctive constraint
[Alx < bl] V [A2x < b7

. [Boolean propositions]
: -
:
5
0
TTiTiTeTs

-
2
<
Q.
Q(‘
%
%
K
<

0o Alx< bl Y
I&\\\W |Q\\\® [§:2:>22X£Z2] [Pure integer inequalities]

Ashish Agarwal () 7/34

Previous definition

@ Convex-hull reformulation of

[Alx < bl] V [A%x < b?]

Azl < bly, n+y=1
A?%? < B2y, x=x'4+x2

Ashish Agarwal ()

8 /34

Previous definition

@ Convex-hull reformulation of

[Alx < bl] V [A%x < b7

Alxt < blyy ity=1
A?R% < b2y, x=x'+x°

@ Insufficient for automation

o Real programs not declared in canonical matrix form

@ How are variables introduced?

@ Disjuncts should be bounded, how is this checked?

@ How are variable bounds tracked?

@ Disaggregated variables should have same bounds as those they replace
(except range must include zero)

Ashish Agarwal () 8 /34

A syntactic foundation for mathematical programs
Agarwal, Bhat, Gray, Grossmann (2010)

p = [r,ru] | [re,o0) | (—oo, ry] | real
| (e, ru) | (rL,00) [(=00, ry) | int
| {true} | {false} | bool
e =x|r|true|false|note|ejore; | e ande

| —eleat+e|la—elex*xe

(9}

2=T|F|isTruee|e = |a<e|laVa|aAa|Ixp.c

P = MaAXxpr, . xmpm 1€ | C}
Ti=e|T,x:p

Ashish Agarwal () 9 /34

. CVX
Convex-hull transformation TFc— ¢

Agarwal, Bhat, Gray, Grossmann (2010)

Th ¢ i ¢l T v
! 1] jetaBy

T = ! { J IRV {"}
ovx (3XA:p.3XB 5. 3yA:(0,1) . 3y B (0, 1).
TFCAVCB%((F=A+B) A (YA +yE =1) A(F A k)

o Compile disjuncts and context
@ Add bounding constraints
@ Substitute disaggregated variables in each disjunct

@ Multiply constant terms by respective y

Ashish Agarwal () 10 / 34

Example: single disjunctive constraint

Input

var x:<10.0, 100.0>
var w:<2.0, 50.0>

min x + w subject_to

(x <= w) disj (x >= w + 4.0)

Ashish Agarwal ()

Output

var x:<10.0, 100.0>
var w:<2.0, 50.0>

min x + w subject_to

exists y1:[0, 1]
exists y2:[0, 1]
exists x1:<0.0, 100.0>
exists x2:<0.0, 100.0>
exists w1:<0.0, 50.0>
exists w2:<0.0, 50.0>

w=wl + w2,

x = x1 + x2,

yl+y2 =1,

10.0 * y1 <= x1,
x1 <= 100.0 * yi,
2.0 x y1 <= w1,
wl <= 50.0 * yi1,
x1 <= wil,

10.0 * y2 <= x2,

x2 <= 100.0 * y2,
2.0 x y2 <= w2,

w2 <= 50.0 * y2,

X2 >= w2 + 4.0 * y2

11/ 34

Example: single disjunctive constraint

Input

var x:<10.0, 100.0>
var w:<2.0, 50.0>

min x + w subject_to
(x <= w) disj (x >= w + 4.0)

@ Output generated in MPS
and AMPL formats

@ Implemented as a DSL
embedded in OCaml

Ashish Agarwal ()

Output

var x:<10.0, 100.0>
var w:<2.0, 50.0>

min x + w subject_to

exists y1:[0, 1]
exists y2:[0, 1]
exists x1:<0.0, 100.0>
exists x2:<0.0, 100.0>
exists w1:<0.0, 50.0>
exists w2:<0.0, 50.0>

w=wl + w2,

x = x1 + x2,

yl+y2 =1,

10.0 * y1 <= x1,
x1 <= 100.0 * yi,
2.0 x y1 <= w1,
wl <= 50.0 * yi1,
x1 <= wil,

10.0 * y2 <= x2,

x2 <= 100.0 * y2,
2.0 x y2 <= w2,

w2 <= 50.0 * y2,
X2 >= w2 + 4.0 * y2

11/ 34

Switched flow process

Z\/1 max

Z\Jmin
Fout

Ashish Agarwal () 12 / 34

Switched flow process, example constraint

Pump «a has three kinds of mode transition dynamics:

Vi € N\{n},
isTrue Z%(off, on, i)
Re(i) > 2.0
2(i) = 50.0
(0) = —R ()

isTrue Z%(on, off, i)
¢*(i)=0.0 \
(i) = —Re(i)

isTrue YY (i)
¢¥(i)=0.0
P(i) = 0.0

Booleans and disjunction enable the natural modeling of such logical
relations between constraints.

Ashish Agarwal () 13/ 34

Switched flow process, example constraint

Pump «a has three kinds of mode transition dynamics:

Vi € N\{n},
isTrue Z%(off, on, i)
Re(i) > 2.0
2(i) = 50.0
(0) = —R ()

isTrue Z%(on, off, i)
¢*(i)=0.0 \
P(i) = —Re(i)

isTrue YY (i)
v ¢*(i)=10.0
P(i) = 0.0

...which interact with each other:

Vi € N\{n},Va € {«, 8}, isTrue YY?(i) & \/ Z%(q,q,1)
qeQ?

Booleans and disjunction enable the natural modeling of such logical
relations between constraints.

Ashish Agarwal () 13/ 34

Switched flow process, comparison to ILOG Concert

Method #vars (#binary) #constr. (#IC) time (sec)
flow-Concert 1061 (874) 1080 (718) 36.85
flow-1C 477 (291) 1001 (438) 11.60
flow-BM 477 (291) 1198 3.37

flow-CH 1194 (631) 2747 1.09

Ashish Agarwal () 14 / 34

Switched flow process, comparison to ILOG Concert

Method #vars (#binary) #constr. (#IC) time (sec)
flow-Concert 1061 (874) 1080 (718) 36.85
flow-1C 477 (291) 1001 (438) 11.60
flow-BM 477 (291) 1198 3.37
flow-CH 1194 (631) 2747 1.09

@ All 3 of our methods improve on state-of-the-art.

Ashish Agarwal () 14 / 34

Strip packing

VA

12

v

Optimal Length: 27

Ashish Agarwal () 15 / 34

Strip packing, formulation

The most natural formulation uses disjunction.

min length
s.t. length>x;+L; VieN
[xi + Li < xj]
VX + L < xi
no Vyi— Hi > y]
overlapping Yi =Y

VIyy—Hi >yl Vi,jeNi<j
stay 0 <x; < Llmax — L; VieN
in bounds H <y <W VieN

(xi,yi) is the position of the top-left corner of rectangle i.

Ashish Agarwal () 16 / 34

Strip packing, comparison to expert

Method #vars (#binary) #tconstr. (#IC) time (sec)
pack12-1C 289 (264) 342 (264) 1.83
packl12-BM 289 (264) 342 1.22
pack12-CH 1345 (264) 2718 168.38
pack12-BM-expert 289 (264) 342 1.82
pack12-CH-expert 1345 (264) 1662 149.57
pack21-1C 883 (840) 1071 (840) 2444
pack21-BM 883 (840) 1071 55.01
pack21-CH 4243 (840) 8631 991.68
pack21-BM-expert 883 (840) 1071 29.56
pack2l-CH-expert 4243 (840) 5271 > 3600.00

Ashish Agarwal () 17 / 34

Strip packing, comparison to expert

Method #vars (#binary) #tconstr. (#IC) time (sec)
pack12-1C 289 (264) 342 (264) 183
pack12-BM 289 (264) 342 1.22
pack12-CH 1345 (264) 2718 168.38
pack12-BM-expert 289 (264) 342 1.82
pack12-CH-expert 1345 (264) 1662 149.57
pack21-1C 883 (840) 1071 (840) 2444
pack21-BM 883 (840) 1071 55.01
pack21-CH 4243 (840) 8631 991.68
pack21-BM-expert 883 (840) 1071 29.56
pack21-CH-expert 4243 (840) 5271 > 3600.00

Ashish Agarwal ()

@ Our mechanizations perform just as well as expert encodings.

17 / 34

Indexing is Ubiquitous

@ We solved a problem with 150,000 equations and 25,000 variables.

@ How were so many equations and variables declared?

Ashish Agarwal () 18 / 34

Indexing is Ubiquitous

@ We solved a problem with 150,000 equations and 25,000 variables.

@ How were so many equations and variables declared?
Sometimes, use matrix notation. Often, use indexing.

Ashish Agarwal () 18 / 34

Indexing is Ubiquitous

(]

We solved a problem with 150,000 equations and 25,000 variables.

@ How were so many equations and variables declared?
Sometimes, use matrix notation. Often, use indexing.

@ Indexed operators:
n
2%
i=1
@ Families of equations:
Vi e [1...n].x,-+1 =Xj + Vi

@ Indexing is a meta-programming feature

@ Index variables i distinct from mathematical variables x

Ashish Agarwal () 18 / 34

Complex Index Sets Arise in Real Problems

@ Job shop scheduling:
VjeJ.Vse 5.V € Prejs.tys < tjs

@ Mappings from sets to set of all sets: S

@ Dependent types: S; depends on value of j

Ashish Agarwal ()

19 / 34

Indexing Language: Syntax
Agarwal (2006)

@ Index Expressions
en=1i|k
| (61,---,em) | €.k
| —e|e1+ex|e1—ex|erxer
| case € of {kj = Ej}jm:l
@ Index Sets (Types)
ou=ler.eyl| o1 X Xim:om
| casec of {kj =0},
| Niso|oe
|o ik
@ Kinds

k= IndexSet |i: 0 =K

Ashish Agarwal () 20 / 34

Example Index Sets

set JOBS = {’a’,’b’,’c’}

set STAGES = fn i . case i of
g0 => {’Sl’,’SQ’}
| 'p? => {’Sl’,’SB’,’S4’}
| ¢’ => {’83’,’84’}

set JOBS_STAGES = i:JOBS * STAGES[il

Explicitly:

{(’a’,’sl’), (’a’,’s2’),
(’b’,’Sl’), (’b’,’S3’), (’b’,’S4’),
(’C’,’SB’), (’C’,’S4’)}

Ashish Agarwal ()

21 /34

Memory Reduction

@ Load this program:
Vi e [1...n].x,-+1 =X;+ Vi
@ Other software expand this to:

X2 =Xx1+Wy
X3 =X2+)2
X4 = X3+ Y3

X5 = X4 + Ya

Ashish Agarwal () 22 /34

Memory Reduction

@ Load this program:
Vi e [1...n].x,-+1 =X;+ Vi
@ Other software expand this to:

X2 =Xx1+Wy
X3 =X2+)2
X4 = X3+ Y3

X5 = X4 + Ya

@ We retain indexing structure:
Memory requirements reduced from O(n) to O(1).

Ashish Agarwal () 22 /34

Computational Improvements

@ Input to our software:

\/ w > x;+4.0

i:[1..10]
@ Our software’s output:
10.0 x y; < wj i
w! < 90.0 * y;
/\ /\ [5.0*y;§x,f’d]
i[1-10] | 41 1) X/{,d <75.0x*y;
w! > X,{J- +4.0x*y;

Ashish Agarwal () 23 /34

Computational Improvements

@ Input to our software:

\/ w > x;+4.0

i:[1..10]
@ Our software’s output:
10.0 x y; < wj i
w! < 90.0 % y;
/\ /\ [5.0*y,-§x;7d]
i[1.20] | .11, 10] Xia <750+
w! > X,{J- +4.0x*y;

Reformulation time reduced from O(n) to O(1).

Ashish Agarwal () 23 /34

Indexing Language: Type System and Semantics
Agarwal (2006)

@ Usual Way: Syntax — Type System — Semantics
Existence is prior to meaning.

@ Alternative Way: Syntax — Semantics — Type System
Meaning is prior to existence.

Ashish Agarwal ()

24 / 34

Indexing Language: Type System and Semantics
Agarwal (2006)

@ Usual Way: Syntax — Type System — Semantics
Existence is prior to meaning.

@ Alternative Way: Syntax — Semantics — Type System
Meaning is prior to existence.

Admits more programs. Possible only because all types are finitary.

Ashish Agarwal () 24 / 34

What Are Random Variables?

@ Wasserman (2004) says:

A random variable is a mapping
X:Q—=R
that assigns a real number X(w) to each outcome w.

Ashish Agarwal () 25 /34

What Are Random Variables?

@ Wasserman (2004) says:

A random variable is a mapping
X:Q2—-R

that assigns a real number X(w) to each outcome w.

However:
@ Treated as real: P(X > 5)

@ Not random:

We write
X ~ Bernoulli(p)

to mean that X is exactly distributed as

f(x) = p*(1 — p)* ™ for x € {0,1}

Ashish Agarwal ()

25 /34

What Are Random Variables?

Not variables:

@ Cannot substitute occurrences of X for anything.
e.g. In P(X > 5), certainly cannot replace X with its distribution.

@ Dependence matters.
e.g. Two random variables X and Y/, both distributed as
Bernoulli(0.5), each 0 or 1 with probability 0.5. What is
P(X+Y =2)?
Perhaps 0.257 But not if Y =1 — X.

Ashish Agarwal () 26 / 34

What Are Random Variables?

Not variables:
@ Cannot substitute occurrences of X for anything.

e.g. In P(X > 5), certainly cannot replace X with its distribution.

@ Dependence matters.
e.g. Two random variables X and Y/, both distributed as
Bernoulli(0.5), each 0 or 1 with probability 0.5. What is
P(X+Y =2)?

Perhaps 0.257 But not if Y =1 — X.

Random variables are neither random nor variable.

Ashish Agarwal ()

26 / 34

Previous Work

@ Giry (1981), Jones and Plotkin (1989)
Probability distributions are a monad.

o Kozen (1981)
Formalized semantics.
@ Ramsey and Pfeffer (2002)
Efficient expectations, but discrete distributions only.
@ Park, Pfenning, and Thrun (2004)
Continuous distributions also, but support only sampling.

@ Erwig and Kollmansberger (2006)
Provide Haskell library, but discrete distributions only, computational
efficiency not optimized.

Ashish Agarwal () 27 / 34

Previous Work

@ Giry (1981), Jones and Plotkin (1989)
Probability distributions are a monad.

o Kozen (1981)
Formalized semantics.

@ Ramsey and Pfeffer (2002)
Efficient expectations, but discrete distributions only.

@ Park, Pfenning, and Thrun (2004)
Continuous distributions also, but support only sampling.

@ Erwig and Kollmansberger (2006)
Provide Haskell library, but discrete distributions only, computational
efficiency not optimized.

Our goal: Unify these results in a single system.

Ashish Agarwal () 27 / 34

Syntax: Probability Language
Bhat, Agarwal, Gray, Vuduc (2010)

T :=Bool | Int |Real| T3 X Tp |Prob T
E ::= x| true | false
I r|E+ B | E x E
| (E1,E2) | fst E | snd E
| if £y then Ey else B3| By =E | E1 < B

| uniform | return E | let x ~ E; in E

Ashish Agarwal () 28 / 34

Language: Type System

Example typing rule:

[E;:Prob T4 Ix:Ti+ Ey:Prob T,
H1let x ~ Ey in E> : Prob T»

Ashish Agarwal () 29 / 34

Language: Type System

Example typing rule:

[E;:Prob T4 Ix:Ti+ Ey:Prob T,
H1let x ~ Ey in E> : Prob T»

Pass: Fail:

var U ~ uniform in var U ~ uniform in

return (U < 0.7) (U<0.7)

Ashish Agarwal () 29 / 34

Gaussian Model

0.00 0.02 0.04 0.06 0.08 0.10

I T T ATk ’MHHIH\ I T H‘\ 1 T TN I‘\

150 160 170 180

Height (cm)

Ashish Agarwal () 30 /34

Mixture of Gaussians Model

0.00 0.02 0.04 0.06 0.08 0.10

I T T ’MHHIH\ I T H‘\ 1 A TN I‘\

150 160 170 180

Height (cm)

Ashish Agarwal () 31 /34

Trying alternative statistical models
Formulation:

Xi ~ Normal(6,1)
0 =arg max f(x]6)

Ashish Agarwal ()

32/34

Trying alternative statistical models
Formulation:

Xi ~ Normal(6,1)
0 =arg max f(x]6)

Solution:

|
9;§

Ashish Agarwal ()

32/34

Trying alternative statistical models

Formulation: Formulation:

Z; ~ Bernoulli(0.5)

Xi ~ Normal(6,1) Xi ~ Normal((1 — Z;)0o + Zi01,1)
é:argmgaxf(xw) é:argmgaxf(x\ﬂ)
Solution:
-2y
n :

Ashish Agarwal () 32 /34

Trying alternative statistical models

Formulation:

Xi ~ Normal(6,1)
0 =arg max f(x]6)

Solution:

:Ii—‘

-1

Ashish Agarwal ()

Formulation:

Z; ~ Bernoulli(0.5)

Xi ~ Normal((l — Z,')HO + Z;i01, 1)
0= argm@axf(x | 6)

Solution:
(907 él) =

while (.

for i

rand () ;
L)

1 to n do
i

o :=

B(xi3 01,1) 7 (B(x;: 00,1) +H(x;: 61,1))
= ST W=y xxi />0 (=)

0p := Z, 1 Vi¥Xi / Z, 1 Vi
return (0, 01);

32/34

Interactive algorithm assistant
Bhat, Agarwal, Gray, Vuduc (2010)

File Edit View Terminal Help
F t s r $ om ~
eatures Objective Caml version 3.11.1
l# load gaussian;;
@ enter problems R S s
argmax{mu : R, ss : R}{
pdf
o apply SChemaS (let pick = normal mu ss in
var x1 ~ pick in var x2 ~ pick in var x3 ~ pick in return (x1, x2, x3))
(9, 28, 11)
@ undo/redo % ='sa)

[# ap (let simpl <& pdf simpl);;
. : Om.Syntax.expr
[Comb”‘]ators argmax{mu : R, s5 : R}
557-1.500000 * %e~((9 - mu)~2/ss * -9.500000 + (28 - mu)"2/ss *
-0.500000 + (11 - mu)~2/ss * -0.500000) * (2 * %pi)~-1.500000

| 8 <= ss}
b# ap (argmax_log <& log_simpl < gmax_add);;
- Om.Syntax.expr
Status argmax{mu : R, ss : R}
-1.500000 * log ss + (9 - mu)~2/ss * -0.500000 + (28 - mu)~2/ss *
-0.500000 + (11 - mu)~2/ss * -0.560000
@ can solve several iy
f [# ap descartes;;
- : Om.Syntax.expr =
textbook examples o R e S e
. . -1.500000 * log ss + (9 - mu)*2/ss * -0.500000 + (28 - mu)"2/ss *
MLE, incl. via EM -6.560000 + (11 - mu)*2/ss * -0.508008
| B <= 55 & 0 = -1.500000/55 + (9 - mu)*2 * Ss*-2 * 0.500000 + (28 - mu)”
. 2 % s5%-2 * §.500000 + (11 - mu)*2 * ss*-2 * §.500000 & @ = 1/ss * (9 -
@ autotuning + more mu) + 1/ss * (28 - mu) + 1/ss * (11 - mu)}
[# ap (rewrite undistr <&> rewrite factors 0 <& simpl <& back solve None);;
1 1 - : Om.Syntax.expr =
sophisticated code e
. . -1.500000 * log ss + (9 - mu)*2/ss * -0.500000 + (28 - mu)"2/ss *
genera‘hon IS planned -9.560000 + (11 - mu)"2/ss * -0.500000

| mu = 16.000000 & 55 = 72.666667}
#

Ashish Agarwal () 33 /34

Conclusions

@ Automated bigM and convex-hull methods
@ Beginnings of a formalization of probability and statistics
@ Library of transformations

@ Formalization of indexing provides:

@ advances on previous MP languages: e.g. GAMS, AMPL, OPL
o fundamental improvements in time and space performance possible

Ashish Agarwal () 34 /34

Conclusions

@ Automated bigM and convex-hull methods
@ Beginnings of a formalization of probability and statistics
@ Library of transformations

@ Formalization of indexing provides:
@ advances on previous MP languages: e.g. GAMS, AMPL, OPL
o fundamental improvements in time and space performance possible
@ challenges remain:
e.g. conversion of

VAe

iioi’o’

A \/{f)/i'}e

f:(i:c—0o’

to indexed CNF

not supported in current theory.

Ashish Agarwal () 34 /34

