
Mechanizing Optimization and Statistics

Ashish Agarwal

Yale University

IBM Programming Languages Day
Watson Research Center

July 29, 2010

Ashish Agarwal () 1 / 34



Acknowledgments

Optimization:

Ignacio Grossmann (Carnegie Mellon)
Nick Sawaya and Vikas Goel (Exxon Mobil)

Indexing:

Bob Harper (Carnegie Mellon)

Statistics:

Sooraj Bhat and Alex Gray (GeorgiaTech)
Rich Vuduc (GeorgiaTech, linear algebra and autotuning)

Ashish Agarwal () 2 / 34



Linear programs (LP)
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Linear programs (LP)
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Cannot represent multiple polyhedra.
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Declaring discrete choice – with disjunction
Disjunctive programs (DP), Balas (1974), Jeroslow and Lowe (1984), Raman and Grossmann (1994)
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Language of DP extends LP with disjunction
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Declaring discrete choice – with disjunction
Disjunctive programs (DP), Balas (1974), Jeroslow and Lowe (1984), Raman and Grossmann (1994)
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Language of DP extends LP with disjunction

Few algorithms for solving DPs directly.
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Declaring discrete choice – with integers
Mixed-integer linear programs (MILP)

Basic idea: multiply terms by y ∈ {0, 1}

0 ≤ y ≤ 1
x ≤ 3.0y + 2.0(1 − y)

if y = 1, then x ≤ 3.0

if y = 0, then x ≤ 2.0
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Goal:
Express as DP

(intuitive)
−→

Convert to MILP
(accepted by solvers)



Multiple Transformation Techniques Available
Choice affects computational efficiency

best big-M reformulation
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System overview

disjunctive constraint
[A1x ≤ b1] ∨ [A2x ≤ b2]
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Previous definition

Convex-hull reformulation of

[A1x ≤ b1] ∨ [A2x ≤ b2]

is

A1x̄1 ≤ b1y1

A2x̄2 ≤ b2y2

y1 + y2 = 1
x = x̄1 + x̄2
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Previous definition

Convex-hull reformulation of

[A1x ≤ b1] ∨ [A2x ≤ b2]

is

A1x̄1 ≤ b1y1

A2x̄2 ≤ b2y2

y1 + y2 = 1
x = x̄1 + x̄2

Insufficient for automation

Real programs not declared in canonical matrix form
How are variables introduced?
Disjuncts should be bounded, how is this checked?
How are variable bounds tracked?
Disaggregated variables should have same bounds as those they replace
(except range must include zero)
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A syntactic foundation for mathematical programs
Agarwal, Bhat, Gray, Grossmann (2010)

ρ ::= [rL, rU ] | [rL,∞) | (−∞, rU ] | real

| 〈rL, rU〉 | 〈rL,∞) | (−∞, rU〉 | int

| {true} | {false} | bool

e ::= x | r | true | false | not e | e1 or e2 | e1 and e2

| −e | e1 + e2 | e1 − e2 | e1 ∗ e2

c ::= T | F | isTrue e | e1 = e2 | e1 ≤ e2 | c1 ∨ c2 | c1 ∧ c2 | ∃x :ρ � c

p ::= maxx1:ρ1,...,xm:ρm {e | c}

Υ ::= • | Υ, x :ρ
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Convex-hull transformation Υ ⊢ c
cvx

7−→ c
′

Agarwal, Bhat, Gray, Grossmann (2010)

{

Υ ⊢ cj
prop

7−→ c ′j

}

j∈{A,B}
Υ

ctxt

7−→ Υ′

{

Υ′ ⊢ c ′j ⊸
x

j
1,...,x

j
m

c ′′j

}

j∈{A,B}

{

y j
⊛

{
~x j/~x

}
c
′′

j →֒ c ′′′j

}

j∈{A,B}

Υ ⊢ cA ∨ cB
cvx

7−→

(
∃~xA :~ρ � ∃~xB :~ρ � ∃yA :〈0, 1〉 � ∃yB :〈0, 1〉�

(
~x = ~xA + ~xB

)
∧

(
yA + yB = 1

)
∧ (c ′′′A ∧ c ′′′B )

)

Compile disjuncts and context

Add bounding constraints

Substitute disaggregated variables in each disjunct

Multiply constant terms by respective y
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Example: single disjunctive constraint

Input

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

(x <= w) disj (x >= w + 4.0)

Output

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

exists y1:[0, 1]

exists y2:[0, 1]

exists x1:<0.0, 100.0>

exists x2:<0.0, 100.0>

exists w1:<0.0, 50.0>

exists w2:<0.0, 50.0>

w = w1 + w2,

x = x1 + x2,

y1 + y2 = 1,

10.0 * y1 <= x1,

x1 <= 100.0 * y1,

2.0 * y1 <= w1,

w1 <= 50.0 * y1,

x1 <= w1,

10.0 * y2 <= x2,

x2 <= 100.0 * y2,

2.0 * y2 <= w2,

w2 <= 50.0 * y2,

x2 >= w2 + 4.0 * y2
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Input

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

(x <= w) disj (x >= w + 4.0)

Output generated in MPS
and AMPL formats

Implemented as a DSL
embedded in OCaml

Output
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exists y1:[0, 1]
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2.0 * y1 <= w1,
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x1 <= w1,

10.0 * y2 <= x2,

x2 <= 100.0 * y2,

2.0 * y2 <= w2,

w2 <= 50.0 * y2,

x2 >= w2 + 4.0 * y2
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Switched flow process

on

off

α

hi

low

β

F out

Mmin

Mmax

m̄α m̄β
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Switched flow process, example constraint

Pump α has three kinds of mode transition dynamics:

∀i ∈ N\{n},





isTrue Zα(on, off, i)
ĉα(i) = 0.0

r̂α(i) = −Re(i)



 ∨







isTrue Zα(off, on, i)
Re(i) ≥ 2.0
ĉα(i) = 50.0

r̂α (i) = −Re (i)






∨





isTrue YY α(i)
ĉα(i) = 0.0
r̂α(i) = 0.0





Booleans and disjunction enable the natural modeling of such logical
relations between constraints.
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 ∨







isTrue Zα(off, on, i)
Re(i) ≥ 2.0
ĉα(i) = 50.0

r̂α (i) = −Re (i)






∨





isTrue YY α(i)
ĉα(i) = 0.0
r̂α(i) = 0.0





...which interact with each other:

∀i ∈ N\{n},∀a ∈ {α, β}, isTrue YY a(i) ⇔
∨

q∈Qa

Z a(q, q, i)

Booleans and disjunction enable the natural modeling of such logical
relations between constraints.
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Switched flow process, comparison to ILOG Concert

Method #vars (#binary) #constr. (#IC) time (sec)

flow-Concert 1061 (874) 1080 (718) 36.85
flow-IC 477 (291) 1001 (438) 11.60
flow-BM 477 (291) 1198 3.37
flow-CH 1194 (631) 2747 1.09
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Switched flow process, comparison to ILOG Concert

Method #vars (#binary) #constr. (#IC) time (sec)

flow-Concert 1061 (874) 1080 (718) 36.85
flow-IC 477 (291) 1001 (438) 11.60
flow-BM 477 (291) 1198 3.37
flow-CH 1194 (631) 2747 1.09

All 3 of our methods improve on state-of-the-art.
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Strip packing
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Strip packing, formulation

The most natural formulation uses disjunction.

min length

s.t. length ≥ xi + Li ∀i ∈ N

no
overlapping







[xi + Li ≤ xj ]
∨ [xj + Lj ≤ xi ]
∨ [yi − Hi ≥ yj ]
∨ [yj − Hj ≥ yi ] ∀i , j ∈ N, i < j

stay
in bounds

{
0 ≤ xi ≤ Lmax − Li ∀i ∈ N

Hi ≤ yi ≤ W ∀i ∈ N

(xi , yi ) is the position of the top-left corner of rectangle i .
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Strip packing, comparison to expert

Method #vars (#binary) #constr. (#IC) time (sec)
pack12-IC 289 (264) 342 (264) 1.83
pack12-BM 289 (264) 342 1.22
pack12-CH 1345 (264) 2718 168.38
pack12-BM-expert 289 (264) 342 1.82
pack12-CH-expert 1345 (264) 1662 149.57

pack21-IC 883 (840) 1071 (840) 24.44
pack21-BM 883 (840) 1071 55.01
pack21-CH 4243 (840) 8631 991.68
pack21-BM-expert 883 (840) 1071 29.56
pack21-CH-expert 4243 (840) 5271 > 3600.00
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pack12-BM-expert 289 (264) 342 1.82
pack12-CH-expert 1345 (264) 1662 149.57

pack21-IC 883 (840) 1071 (840) 24.44
pack21-BM 883 (840) 1071 55.01
pack21-CH 4243 (840) 8631 991.68
pack21-BM-expert 883 (840) 1071 29.56
pack21-CH-expert 4243 (840) 5271 > 3600.00

Our mechanizations perform just as well as expert encodings.
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Indexing is Ubiquitous

We solved a problem with 150,000 equations and 25,000 variables.

How were so many equations and variables declared?
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Indexing is Ubiquitous

We solved a problem with 150,000 equations and 25,000 variables.

How were so many equations and variables declared?
Sometimes, use matrix notation. Often, use indexing.

Indexed operators:
n∑

i=1

xi

Families of equations:

∀i ∈ [1 . . . n] � xi+1 = xi + yi

Indexing is a meta-programming feature

Index variables i distinct from mathematical variables x
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Complex Index Sets Arise in Real Problems

Job shop scheduling:

∀j ∈ J � ∀s ∈ Sj � ∀j ′ ∈ Prej ,s � tj ′,s ≤ tj ,s

Mappings from sets to set of all sets: S

Dependent types: Sj depends on value of j
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Indexing Language: Syntax
Agarwal (2006)

Index Expressions

ε ::= i | k

| (ε1, . . . , εm) | ε.k

| −ε | ε1 + ε2 | ε1 − ε2 | ε1 ∗ ε2

| case ε of {kj ⇒ εj}
m
j=1

Index Sets (Types)

σ ::= [εL..εU ] | i1 : σ1 × · · · × im : σm

| case ε of {kj ⇒ σj}
m
j=1

| λi � σ | σ ε

| σ :: κ

Kinds
κ ::= IndexSet | i : σ ⇒ κ
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Example Index Sets

set JOBS = {’a’,’b’,’c’}

set STAGES = fn i . case i of

’a’ => {’s1’,’s2’}

| ’b’ => {’s1’,’s3’,’s4’}

| ’c’ => {’s3’,’s4’}

set JOBS_STAGES = i:JOBS * STAGES[i]

Explicitly:

{(’a’,’s1’), (’a’,’s2’),

(’b’,’s1’), (’b’,’s3’), (’b’,’s4’),

(’c’,’s3’), (’c’,’s4’)}
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Memory Reduction

Load this program:

∀i ∈ [1 . . . n] � xi+1 = xi + yi

Other software expand this to:

x2 = x1 + y1

x3 = x2 + y2

x4 = x3 + y3

x5 = x4 + y4

...
...

...
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Memory Reduction

Load this program:

∀i ∈ [1 . . . n] � xi+1 = xi + yi

Other software expand this to:

x2 = x1 + y1

x3 = x2 + y2

x4 = x3 + y3

x5 = x4 + y4

...
...

...

We retain indexing structure:
Memory requirements reduced from O(n) to O(1).

Ashish Agarwal () 22 / 34



Computational Improvements

Input to our software:

∨

i :[1..10]

w ≥ xi + 4.0

Our software’s output:

∧

i :[1..10]










10.0 ∗ yi ≤ w ′
i

w ′
i ≤ 90.0 ∗ yi

∧

d:[1..10]

[
5.0 ∗ yi ≤ x ′

i ,d

x ′
i ,d ≤ 75.0 ∗ yi

]

w ′
i ≥ x ′

i ,i + 4.0 ∗ yi
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Reformulation time reduced from O(n) to O(1).



Indexing Language: Type System and Semantics
Agarwal (2006)

Usual Way: Syntax → Type System → Semantics
Existence is prior to meaning.

Alternative Way: Syntax → Semantics → Type System
Meaning is prior to existence.
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Admits more programs. Possible only because all types are finitary.



What Are Random Variables?

Wasserman (2004) says:

A random variable is a mapping
X : Ω → R

that assigns a real number X (ω) to each outcome ω.
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What Are Random Variables?

Wasserman (2004) says:

A random variable is a mapping
X : Ω → R

that assigns a real number X (ω) to each outcome ω.

However:

Treated as real: P(X ≥ 5)

Not random:
We write

X ∼ Bernoulli(p)

to mean that X is exactly distributed as

f (x) = px(1 − p)1−x for x ∈ {0, 1}
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What Are Random Variables?

Not variables:

Cannot substitute occurrences of X for anything.
e.g. In P(X ≥ 5), certainly cannot replace X with its distribution.

Dependence matters.
e.g. Two random variables X and Y , both distributed as
Bernoulli(0.5), each 0 or 1 with probability 0.5. What is
P(X + Y = 2)?

Perhaps 0.25? But not if Y = 1 − X .
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Random variables are neither random nor variable.



Previous Work

Giry (1981), Jones and Plotkin (1989)
Probability distributions are a monad.

Kozen (1981)
Formalized semantics.

Ramsey and Pfeffer (2002)
Efficient expectations, but discrete distributions only.

Park, Pfenning, and Thrun (2004)
Continuous distributions also, but support only sampling.

Erwig and Kollmansberger (2006)
Provide Haskell library, but discrete distributions only, computational
efficiency not optimized.
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Our goal: Unify these results in a single system.



Syntax: Probability Language
Bhat, Agarwal, Gray, Vuduc (2010)

T ::= Bool | Int | Real | T1 × T2 | Prob T

E ::= x | true | false

| r | E1 + E2 | E1 × E2

| (E1,E2) | fst E | snd E

| if E1 then E2 else E3 | E1 = E2 | E1 ≤ E2

| uniform | return E | let x ∼ E1 in E2
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Language: Type System

Example typing rule:

Γ ⊢ E1 : Prob T1 Γ, x : T1 ⊢ E2 : Prob T2

Γ ⊢ let x ∼ E1 in E2 : Prob T2
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Language: Type System

Example typing rule:

Γ ⊢ E1 : Prob T1 Γ, x : T1 ⊢ E2 : Prob T2

Γ ⊢ let x ∼ E1 in E2 : Prob T2

Pass:

var U ∼ uniform in

return (U ≤ 0.7)

Fail:

var U ∼ uniform in

(U ≤ 0.7)
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Gaussian Model
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Mixture of Gaussians Model
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Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)
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n
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Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)

Solution:

θ̂ =
1

n

n∑

i=1

xi

Formulation:

Zi ∼ Bernoulli(0.5)

Xi ∼ Normal((1 − Zi)θ0 + Ziθ1, 1)

θ̂ = arg max
θ

f (x | θ)
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Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)

Solution:

θ̂ =
1

n

n∑

i=1

xi

Formulation:

Zi ∼ Bernoulli(0.5)

Xi ∼ Normal((1 − Zi)θ0 + Ziθ1, 1)

θ̂ = arg max
θ

f (x | θ)

Solution:

(θ̂0, θ̂1) := rand ();

while (...)

for i = 1 to n do

γi := φ(xi ; θ̂1,1)/(φ(xi ; θ̂0,1)+φ(xi ; θ̂1,1));

θ̂0 :=
Pn

i=1(1-γi )*xi /
Pn

i=1(1-γi );

θ̂1 :=
Pn

i=1 γi *xi /
Pn

i=1 γi ;

return (θ̂0, θ̂1);
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Interactive algorithm assistant
Bhat, Agarwal, Gray, Vuduc (2010)

Features

enter problems

apply schemas

undo/redo

combinators

Status

can solve several
textbook examples of
MLE, incl. via EM

autotuning + more
sophisticated code
generation is planned
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Conclusions

Automated bigM and convex-hull methods

Beginnings of a formalization of probability and statistics

Library of transformations

Formalization of indexing provides:

advances on previous MP languages: e.g. GAMS, AMPL, OPL
fundamental improvements in time and space performance possible
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Conclusions

Automated bigM and convex-hull methods

Beginnings of a formalization of probability and statistics

Library of transformations

Formalization of indexing provides:

advances on previous MP languages: e.g. GAMS, AMPL, OPL
fundamental improvements in time and space performance possible
challenges remain:
e.g. conversion of

∨

i :σ

∧

i ′:σ′

e

to indexed CNF ∧

f :(i :σ→σ
′)

∨

i :σ

{f (i) /i ′} e

not supported in current theory.
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