Mechanizing Optimization and Statistics

Ashish Agarwal
Yale University

IBM Programming Languages Day Watson Research Center

July 29, 2010

Acknowledgments

- Optimization:

Ignacio Grossmann (Carnegie Mellon)
Nick Sawaya and Vikas Goel (Exxon Mobil)

- Indexing:

Bob Harper (Carnegie Mellon)

- Statistics:

Sooraj Bhat and Alex Gray (GeorgiaTech)
Rich Vuduc (GeorgiaTech, linear algebra and autotuning)

Linear programs (LP)

Dantzig (1982)

$$
\begin{aligned}
& x_{1} \geq 1.0 \\
& x_{2} \geq 1.0 \\
& x_{1}+x_{2} \leq 5.0
\end{aligned}
$$

Linear programs (LP)

Dantzig (1982)

$$
\begin{aligned}
& \max x_{1}-x_{2} \\
& x_{1} \geq 1.0 \\
& x_{2} \geq 1.0 \\
& x_{1}+x_{2} \leq 5.0
\end{aligned}
$$

Linear programs (LP)

Dantzig (1982)

Cannot represent multiple polyhedra.

Declaring discrete choice - with disjunction

Disjunctive programs (DP), Balas (1974), Jeroslow and Lowe (1984), Raman and Grossmann (1994)

$$
\underbrace{\left[\begin{array}{c}
x_{1} \geq 1 \\
x_{2} \geq 1 \\
x_{1}+x_{2} \leq 5
\end{array}\right]}_{R^{1}} \underbrace{\left[\begin{array}{c}
5 \leq x_{1} \leq 8 \\
4 \leq x_{2} \leq 7
\end{array}\right]}_{R^{2}}
$$

Declaring discrete choice - with disjunction

Disjunctive programs (DP), Balas (1974), Jeroslow and Lowe (1984), Raman and Grossmann (1994)

- Language of DP extends LP with disjunction

Declaring discrete choice - with disjunction

Disjunctive programs (DP), Balas (1974), Jeroslow and Lowe (1984), Raman and Grossmann (1994)

- Language of DP extends LP with disjunction
- Few algorithms for solving DPs directly.

Declaring discrete choice - with integers

Mixed-integer linear programs (MILP)

- Basic idea: multiply terms by $y \in\{0,1\}$

$$
\begin{aligned}
& 0 \leq y \leq 1 \\
& x \leq 3.0 y+2.0(1-y)
\end{aligned}
$$

- if $y=1$, then $x \leq 3.0$
- if $y=0$, then $x \leq 2.0$

Declaring discrete choice - with integers

Mixed-integer linear programs (MILP)

- Basic idea: multiply terms by $y \in\{0,1\}$

$$
\begin{aligned}
& 0 \leq y \leq 1 \\
& x \leq 3.0 y+2.0(1-y)
\end{aligned}
$$

- if $y=1$, then $x \leq 3.0$
- if $y=0$, then $x \leq 2.0$
- Language of MILP extends LP with the integer type

Declaring discrete choice - with integers

Mixed-integer linear programs (MILP)

- Basic idea: multiply terms by $y \in\{0,1\}$

$$
\begin{aligned}
& 0 \leq y \leq 1 \\
& x \leq 3.0 y+2.0(1-y)
\end{aligned}
$$

- if $y=1$, then $x \leq 3.0$
- if $y=0$, then $x \leq 2.0$
- Language of MILP extends LP with the integer type

Multiple Transformation Techniques Available

Choice affects computational efficiency

System overview

Previous definition

- Convex-hull reformulation of

$$
\left[A^{1} x \leq b^{1}\right] \vee\left[A^{2} x \leq b^{2}\right]
$$

- is

$$
\begin{array}{ll}
A^{1} \bar{x}^{1} \leq b^{1} y_{1} & y_{1}+y_{2}=1 \\
A^{2} \bar{x}^{2} \leq b^{2} y_{2} & x=\bar{x}^{1}+\bar{x}^{2}
\end{array}
$$

Previous definition

- Convex-hull reformulation of

$$
\left[A^{1} x \leq b^{1}\right] \vee\left[A^{2} x \leq b^{2}\right]
$$

- is

$$
\begin{array}{ll}
A^{1} \bar{x}^{1} \leq b^{1} y_{1} & y_{1}+y_{2}=1 \\
A^{2} \bar{x}^{2} \leq b^{2} y_{2} & x=\bar{x}^{1}+\bar{x}^{2}
\end{array}
$$

- Insufficient for automation
- Real programs not declared in canonical matrix form
- How are variables introduced?
- Disjuncts should be bounded, how is this checked?
- How are variable bounds tracked?
- Disaggregated variables should have same bounds as those they replace (except range must include zero)

A syntactic foundation for mathematical programs

 Agarwal, Bhat, Gray, Grossmann (2010)$$
\begin{aligned}
\rho::= & {\left[r_{L}, r_{U}\right]\left|\left[r_{L}, \infty\right)\right|\left(-\infty, r_{U}\right] \mid \text { real } } \\
& \left|\left\langle r_{L}, r_{U}\right\rangle\right|\left\langle r_{L}, \infty\right)\left|\left(-\infty, r_{U}\right\rangle\right| \text { int } \\
& \mid\{\text { true }\} \mid\{\text { false }\} \mid \text { bool } \\
e::= & x|r| \text { true } \mid \text { false } \mid \text { not } e \mid e_{1} \text { or } e_{2} \mid e_{1} \text { and } e_{2} \\
& |-e| e_{1}+e_{2}\left|e_{1}-e_{2}\right| e_{1} * e_{2} \\
c::= & \mathrm{T}|\mathrm{~F}| \text { isTrue } e\left|e_{1}=e_{2}\right| e_{1} \leq e_{2}\left|c_{1} \vee c_{2}\right| c_{1} \wedge c_{2} \mid \exists x: \rho \cdot c \\
p::= & \max _{x_{1}: \rho_{1}, \ldots, x_{m}: \rho_{m}}\{e \mid c\} \\
\Upsilon::= & \bullet \mid \Upsilon, x: \rho
\end{aligned}
$$

Convex-hull transformation

$\Upsilon \vdash c \xrightarrow{\mathrm{cvx}} c^{\prime}$

Agarwal, Bhat, Gray, Grossmann (2010)

$$
\begin{aligned}
& \left\{\Upsilon \vdash c_{j} \stackrel{\text { PROP }}{\longmapsto} c_{j}^{\prime}\right\}_{j \in\{A, B\}} \quad \Upsilon \stackrel{\text { CTXT }}{\longmapsto} \Upsilon^{\prime} \\
& \left\{r^{\prime} \vdash c_{j}^{\prime} \multimap_{x_{1}^{j}, \ldots, x_{m}^{j}} c_{j}^{\prime \prime}\right\}_{j \in\{A, B\}} \quad\left\{y^{j} \circledast\left\{\vec{x}^{j} / \vec{x}\right\} c_{j}^{\prime \prime} \hookrightarrow c_{j}^{\prime \prime \prime}\right\}_{j \in\{A, B\}} \\
& \Upsilon \vdash c_{A} \vee c_{B} \stackrel{\operatorname{cvx}}{\longmapsto}\binom{\exists \vec{x}^{A}: \vec{\rho} \cdot \exists \vec{x}^{B}: \vec{\rho} \cdot \exists y^{A}:\langle 0,1\rangle \cdot \exists y^{B}:\langle 0,1\rangle .}{\left(\vec{x}=\vec{x}^{A}+\vec{x}^{B}\right) \wedge\left(y^{A}+y^{B}=1\right) \wedge\left(c_{A}^{\prime \prime \prime} \wedge c_{B}^{\prime \prime \prime}\right)}
\end{aligned}
$$

- Compile disjuncts and context
- Add bounding constraints
- Substitute disaggregated variables in each disjunct
- Multiply constant terms by respective y

Example: single disjunctive constraint

Input

```
var x:<10.0, 100.0>
var w:<2.0, 50.0>
min x + w subject_to
(x <= w) disj (x >= w + 4.0)
```


Output

```
var x:<10.0, 100.0>
var w:<2.0, 50.0>
min x + w subject_to
exists y1:[0, 1]
exists y2:[0, 1]
exists x1:<0.0, 100.0>
exists x2:<0.0, 100.0>
exists w1:<0.0, 50.0>
exists w2:<0.0, 50.0>
    w = w1 + w2,
    x = x1 + x2,
    y1 + y2 = 1,
    10.0 * y1 <= x1,
    x1 <= 100.0 * y1,
    2.0 * y1 <= w1,
    w1 <= 50.0 * y1,
    x1 <= w1,
    10.0 * y2 <= x2,
    x2 <= 100.0 * y2,
    2.0 * y2 <= w2,
    w2 <= 50.0 * y2,
    x2 >= w2 + 4.0 * y2
```


Example: single disjunctive constraint

Input

```
var x:<10.0, 100.0>
var w:<2.0, 50.0>
min x + w subject_to
(x <= w) disj (x >= w + 4.0)
```

- Output generated in MPS and AMPL formats
- Implemented as a DSL embedded in OCaml

Output

```
var x:<10.0, 100.0>
var w:<2.0, 50.0>
min x + w subject_to
exists y1:[0, 1]
exists y2:[0, 1]
exists x1:<0.0, 100.0>
exists x2:<0.0, 100.0>
exists w1:<0.0, 50.0>
exists w2:<0.0, 50.0>
    w = w1 + w2,
    x = x1 + x2,
    y1 + y2 = 1,
    10.0 * y1 <= x1,
    x1 <= 100.0 * y1,
    2.0 * y1 <= w1,
    w1 <= 50.0 * y1,
    x1 <= w1,
    10.0 * y2 <= x2,
    x2 <= 100.0 * y2,
    2.0 * y2 <= w2,
    w2 <= 50.0 * y2,
    x2 >= w2 + 4.0 * y2
```


Switched flow process

Switched flow process, example constraint

Pump α has three kinds of mode transition dynamics:

$$
\forall i \in \mathbb{N} \backslash\{n\}
$$

$$
\left[\begin{array}{c}
\text { isTrue } Z^{\alpha}(\text { on, off, } i) \\
\hat{c}^{\alpha}(i)=0.0 \\
\hat{r}^{\alpha}(i)=-R^{e}(i)
\end{array}\right] \vee\left[\begin{array}{c}
\text { isTrue } Z^{\alpha}(\text { off, on, } i) \\
R^{e}(i) \geq 2.0 \\
\hat{c}^{\alpha}(i)=50.0 \\
\hat{r}^{\alpha}(i)=-R^{e}(i)
\end{array}\right] \vee\left[\begin{array}{c}
\text { isTrue } Y Y^{\alpha}(i) \\
\hat{c}^{\alpha}(i)=0.0 \\
\hat{r}^{\alpha}(i)=0.0
\end{array}\right]
$$

Booleans and disjunction enable the natural modeling of such logical relations between constraints.

Switched flow process, example constraint

Pump α has three kinds of mode transition dynamics:
$\forall i \in \mathbb{N} \backslash\{n\}$,

$$
\left[\begin{array}{c}
\text { isTrue } Z^{\alpha}(\text { on, off, } i) \\
\hat{c}^{\alpha}(i)=0.0 \\
\hat{r}^{\alpha}(i)=-R^{e}(i)
\end{array}\right] \vee\left[\begin{array}{c}
\text { isTrue } Z^{\alpha}(\text { off, on, } i) \\
R^{e}(i) \geq 2.0 \\
\hat{c}^{\alpha}(i)=50.0 \\
\hat{r}^{\alpha}(i)=-R^{e}(i)
\end{array}\right] \vee\left[\begin{array}{c}
\text { isTrue } Y Y^{\alpha}(i) \\
\hat{c}^{\alpha}(i)=0.0 \\
\hat{r}^{\alpha}(i)=0.0
\end{array}\right]
$$

...which interact with each other:

$$
\forall i \in \mathbb{N} \backslash\{n\}, \forall a \in\{\alpha, \beta\}, \text { isTrue } Y Y^{a}(i) \Leftrightarrow \bigvee_{q \in \mathbb{Q}^{a}} Z^{a}(q, q, i)
$$

Booleans and disjunction enable the natural modeling of such logical relations between constraints.

Switched flow process, comparison to ILOG Concert

Method	\#vars (\#binary)	\#constr. (\#IC)	time (sec)
flow-Concert	$1061(874)$	$1080(718)$	36.85
flow-IC	$477(291)$	$1001(438)$	11.60
flow-BM	$477(291)$	1198	3.37
flow-CH	$1194(631)$	2747	1.09

Switched flow process, comparison to ILOG Concert

Method	\#vars (\#binary)	\#constr. (\#IC)	time (sec)
flow-Concert	$1061(874)$	$1080(718)$	36.85
flow-IC	$477(291)$	$1001(438)$	11.60
flow-BM	$477(291)$	1198	3.37
flow-CH	$1194(631)$	2747	1.09

- All 3 of our methods improve on state-of-the-art.

Strip packing

Strip packing, formulation

The most natural formulation uses disjunction.

$$
\begin{aligned}
& \begin{aligned}
& \min \text { length } \\
& \text { s.t. } \text { length } \geq x_{i}+L_{i} \quad \forall i \in \mathbb{N} \\
& \quad \text { no }
\end{aligned} \\
& \text { overlapping }\left\{\begin{array}{l}
{\left[x_{i}+L_{i} \leq x_{j}\right]} \\
\vee\left[x_{j}+L_{j} \leq x_{i}\right] \\
\vee\left[y_{i}-H_{i} \geq y_{j}\right] \\
\vee\left[y_{j}-H_{j} \geq y_{i}\right] \quad \forall i, j \in \mathbb{N}, i<j
\end{array}\right. \\
& \text { stay } \begin{array}{l}
\text { in bounds }
\end{array} \begin{cases}0 \leq x_{i} \leq L_{\max }-L_{i} & \forall i \in \mathbb{N} \\
H_{i} \leq y_{i} \leq W & \forall i \in \mathbb{N}\end{cases}
\end{aligned}
$$

$\left(x_{i}, y_{i}\right)$ is the position of the top-left corner of rectangle i.

Strip packing, comparison to expert

Method	\#vars (\#binary)	\#constr. (\#IC)	time (sec)
pack12-IC	$289(264)$	$342(264)$	1.83
pack12-BM	$289(264)$	342	1.22
pack12-CH	$1345(264)$	2718	168.38
pack12-BM-expert	$289(264)$	342	1.82
pack12-CH-expert	$1345(264)$	1662	149.57
pack21-IC	$883(840)$	$1071(840)$	24.44
pack21-BM	$883(840)$	1071	55.01
pack21-CH	$4243(840)$	8631	991.68
pack21-BM-expert	$883(840)$	1071	29.56
pack21-CH-expert	$4243(840)$	5271	>3600.00

Strip packing, comparison to expert

Method	\#vars (\#binary)	\#constr. (\#IC)	time (sec)
pack12-IC	$289(264)$	$342(264)$	1.83
pack12-BM	$289(264)$	342	1.22
pack12-CH	$1345(264)$	2718	168.38
pack12-BM-expert	$289(264)$	342	1.82
pack12-CH-expert	$1345(264)$	1662	149.57
pack21-IC	$883(840)$	$1071(840)$	24.44
pack21-BM	$883(840)$	1071	55.01
pack21-CH	$4243(840)$	8631	991.68
pack21-BM-expert	$883(840)$	1071	29.56
pack21-CH-expert	$4243(840)$	5271	>3600.00

- Our mechanizations perform just as well as expert encodings.

Indexing is Ubiquitous

- We solved a problem with 150,000 equations and 25,000 variables.
- How were so many equations and variables declared?

Indexing is Ubiquitous

- We solved a problem with 150,000 equations and 25,000 variables.
- How were so many equations and variables declared? Sometimes, use matrix notation. Often, use indexing.

Indexing is Ubiquitous

- We solved a problem with 150,000 equations and 25,000 variables.
- How were so many equations and variables declared?

Sometimes, use matrix notation. Often, use indexing.

- Indexed operators:

$$
\sum_{i=1}^{n} x_{i}
$$

- Families of equations:

$$
\forall i \in[1 \ldots n] \cdot x_{i+1}=x_{i}+y_{i}
$$

- Indexing is a meta-programming feature
- Index variables i distinct from mathematical variables x

Complex Index Sets Arise in Real Problems

- Job shop scheduling:

$$
\forall j \in J . \forall s \in S_{j} \cdot \forall j^{\prime} \in \operatorname{Pr}_{j, s} \cdot t_{j^{\prime}, s} \leq t_{j, s}
$$

- Mappings from sets to set of all sets: S
- Dependent types: S_{j} depends on value of j

Indexing Language: Syntax

Agarwal (2006)

- Index Expressions

$$
\begin{aligned}
\varepsilon & ::=i \mid k \\
& \left|\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)\right| \varepsilon . k \\
& |-\varepsilon| \varepsilon_{1}+\varepsilon_{2}\left|\varepsilon_{1}-\varepsilon_{2}\right| \varepsilon_{1} * \varepsilon_{2} \\
& \mid \text { case } \varepsilon \text { of }\left\{k_{j} \Rightarrow \varepsilon_{j}\right\}_{j=1}^{m}
\end{aligned}
$$

- Index Sets (Types)

$$
\begin{aligned}
\sigma & ::=\left[\varepsilon_{L . .} \varepsilon_{U}\right] \mid i_{1}: \sigma_{1} \times \cdots \times i_{m}: \sigma_{m} \\
& \mid \text { case } \varepsilon \text { of }\left\{k_{j} \Rightarrow \sigma_{j}\right\}_{j=1}^{m} \\
& |\lambda i \cdot \sigma| \sigma \varepsilon \\
& \mid \sigma:: \kappa
\end{aligned}
$$

- Kinds

$$
\kappa::=\text { IndexSet } \mid i: \sigma \Rightarrow \kappa
$$

Example Index Sets

$$
\begin{aligned}
& \text { set JOBS = \{'a','b','c'\} } \\
& \text { set } \text { STAGES = fn i . case i of } \\
& \text { 'a' => \{'s1','s2'\} } \\
& \text { | 'b' => \{'s1','s3','s4'\} } \\
& \text { | 'c' => \{'s3','s4'\} }
\end{aligned}
$$

set JOBS_STAGES = i:JOBS * STAGES[i]

Explicitly:

```
{('a','s1'), ('a','s2'),
    ('b','s1'), ('b','s3'), ('b','s4'),
    ('c','s3'), ('c','s4')}
```


Memory Reduction

- Load this program:

$$
\forall i \in[1 \ldots n] \cdot x_{i+1}=x_{i}+y_{i}
$$

- Other software expand this to:

$$
\begin{aligned}
& x_{2}=x_{1}+y_{1} \\
& x_{3}=x_{2}+y_{2} \\
& x_{4}=x_{3}+y_{3} \\
& x_{5}=x_{4}+y_{4}
\end{aligned}
$$

Memory Reduction

- Load this program:

$$
\forall i \in[1 \ldots n] \cdot x_{i+1}=x_{i}+y_{i}
$$

- Other software expand this to:

$$
\begin{aligned}
& x_{2}=x_{1}+y_{1} \\
& x_{3}=x_{2}+y_{2} \\
& x_{4}=x_{3}+y_{3} \\
& x_{5}=x_{4}+y_{4}
\end{aligned}
$$

- We retain indexing structure:

Memory requirements reduced from $O(n)$ to $O(1)$.

Computational Improvements

- Input to our software:

$$
\bigvee_{i:[1 . .10]} w \geq x_{i}+4.0
$$

- Our software's output:

$$
\bigwedge_{i:[1 . .10]}\left[\begin{array}{c}
10.0 * y_{i} \leq w_{i}^{\prime} \\
w_{i}^{\prime} \leq 90.0 * y_{i} \\
\bigwedge_{d:[1 . .10]} \\
w_{i}^{\prime} \geq x_{i, i}^{\prime}+4.0 * y_{i}
\end{array}\right]
$$

Computational Improvements

- Input to our software:

$$
\bigvee_{i:[1 . .10]} w \geq x_{i}+4.0
$$

- Our software's output:

$$
\bigwedge_{i:[1 . .10]}\left[\begin{array}{c}
10.0 * y_{i} \leq w_{i}^{\prime} \\
w_{i}^{\prime} \leq 90.0 * y_{i} \\
\bigwedge_{d:[1 . .10]}^{w_{i}^{\prime} \geq x_{i, i}^{\prime}+4.0 * y_{i}}
\end{array}\right]
$$

Reformulation time reduced from $O(n)$ to $O(1)$.

Indexing Language: Type System and Semantics

 Agarwal (2006)- Usual Way: Syntax \rightarrow Type System \rightarrow Semantics Existence is prior to meaning.
- Alternative Way: Syntax \rightarrow Semantics \rightarrow Type System Meaning is prior to existence.

Indexing Language: Type System and Semantics

 Agarwal (2006)- Usual Way: Syntax \rightarrow Type System \rightarrow Semantics Existence is prior to meaning.
- Alternative Way: Syntax \rightarrow Semantics \rightarrow Type System Meaning is prior to existence.

Admits more programs. Possible only because all types are finitary.

What Are Random Variables?

- Wasserman (2004) says:
A random variable is a mapping

$$
X: \Omega \rightarrow \mathbb{R}
$$

that assigns a real number $X(\omega)$ to each outcome ω.

What Are Random Variables?

- Wasserman (2004) says:
A random variable is a mapping

$$
X: \Omega \rightarrow \mathbb{R}
$$

that assigns a real number $X(\omega)$ to each outcome ω.
However:

- Treated as real: $\mathbb{P}(X \geq 5)$
- Not random:

We write

$$
X \sim \operatorname{Bernoulli}(p)
$$

to mean that X is exactly distributed as

$$
f(x)=p^{x}(1-p)^{1-x} \text { for } x \in\{0,1\}
$$

What Are Random Variables?

Not variables:

- Cannot substitute occurrences of X for anything. e.g. In $\mathbb{P}(X \geq 5)$, certainly cannot replace X with its distribution.
- Dependence matters.
e.g. Two random variables X and Y, both distributed as Bernoulli(0.5), each 0 or 1 with probability 0.5 . What is $\mathbb{P}(X+Y=2)$?
Perhaps 0.25 ? But not if $Y=1-X$.

What Are Random Variables?

Not variables:

- Cannot substitute occurrences of X for anything. e.g. In $\mathbb{P}(X \geq 5)$, certainly cannot replace X with its distribution.
- Dependence matters.
e.g. Two random variables X and Y, both distributed as Bernoulli(0.5), each 0 or 1 with probability 0.5 . What is $\mathbb{P}(X+Y=2)$?
Perhaps 0.25 ? But not if $Y=1-X$.

Random variables are neither random nor variable.

Previous Work

- Giry (1981), Jones and Plotkin (1989)

Probability distributions are a monad.

- Kozen (1981)

Formalized semantics.

- Ramsey and Pfeffer (2002) Efficient expectations, but discrete distributions only.
- Park, Pfenning, and Thrun (2004) Continuous distributions also, but support only sampling.
- Erwig and Kollmansberger (2006)

Provide Haskell library, but discrete distributions only, computational efficiency not optimized.

Previous Work

- Giry (1981), Jones and Plotkin (1989)

Probability distributions are a monad.

- Kozen (1981)

Formalized semantics.

- Ramsey and Pfeffer (2002) Efficient expectations, but discrete distributions only.
- Park, Pfenning, and Thrun (2004)

Continuous distributions also, but support only sampling.

- Erwig and Kollmansberger (2006)

Provide Haskell library, but discrete distributions only, computational efficiency not optimized.

Our goal: Unify these results in a single system.

Syntax: Probability Language

Bhat, Agarwal, Gray, Vuduc (2010)

$$
\begin{aligned}
T:: & \text { Bool } \mid \text { Int } \mid \text { Real }\left|T_{1} \times T_{2}\right| \text { Prob } T \\
E: & =x \mid \text { true } \mid \text { false } \\
& |r| E_{1}+E_{2} \mid E_{1} \times E_{2} \\
& \left|\left(E_{1}, E_{2}\right)\right| \text { fst } E \mid \text { snd } E \\
& \mid \text { if } E_{1} \text { then } E_{2} \text { else } E_{3}\left|E_{1}=E_{2}\right| E_{1} \leq E_{2} \\
& \mid \text { uniform } \mid \text { return } E \mid \text { let } x \sim E_{1} \text { in } E_{2}
\end{aligned}
$$

Language: Type System

Example typing rule:

$$
\frac{\Gamma \vdash E_{1}: \operatorname{Prob} T_{1} \quad \Gamma, x: T_{1} \vdash E_{2}: \operatorname{Prob} T_{2}}{\Gamma \vdash \operatorname{let} x \sim E_{1} \text { in } E_{2}: \operatorname{Prob} T_{2}}
$$

Language: Type System

Example typing rule:

$$
\frac{\Gamma \vdash E_{1}: \operatorname{Prob} T_{1} \quad \Gamma, x: T_{1} \vdash E_{2}: \operatorname{Prob} T_{2}}{\Gamma \vdash \operatorname{let} x \sim E_{1} \text { in } E_{2}: \operatorname{Prob} T_{2}}
$$

Pass:

$$
\begin{aligned}
& \text { var } U \sim \text { uniform in } \\
& \text { return }(U \leq 0.7)
\end{aligned}
$$

Fail:

$$
\begin{aligned}
& \operatorname{var} U \sim \text { uniform in } \\
& \qquad(U \leq 0.7)
\end{aligned}
$$

Gaussian Model

Mixture of Gaussians Model

Trying alternative statistical models

Formulation:

$X_{i} \sim \operatorname{Normal}(\theta, 1)$
$\hat{\theta}=\arg \max _{\theta} f(x \mid \theta)$

Trying alternative statistical models

Formulation:

$$
\begin{aligned}
& X_{i} \sim \operatorname{Normal}(\theta, 1) \\
& \hat{\theta}=\arg \max _{\theta} f(x \mid \theta)
\end{aligned}
$$

Solution:

$$
\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Trying alternative statistical models

Formulation:
$X_{i} \sim \operatorname{Normal}(\theta, 1)$
$\hat{\theta}=\arg \max _{\theta} f(x \mid \theta)$

Formulation:

$$
Z_{i} \sim \operatorname{Bernoulli}(0.5)
$$

$$
X_{i} \sim \operatorname{Normal}\left(\left(1-Z_{i}\right) \theta_{0}+Z_{i} \theta_{1}, 1\right)
$$

$$
\hat{\theta}=\arg \max _{\theta} f(x \mid \theta)
$$

Solution:

$$
\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Trying alternative statistical models

Formulation:
$X_{i} \sim \operatorname{Normal}(\theta, 1)$
$\hat{\theta}=\arg \max _{\theta} f(x \mid \theta)$
Solution:

$$
\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Formulation:

$$
\begin{aligned}
& Z_{i} \sim \operatorname{Bernoulli}(0.5) \\
& X_{i} \sim \operatorname{Normal}\left(\left(1-Z_{i}\right) \theta_{0}+Z_{i} \theta_{1}, 1\right) \\
& \hat{\theta}=\arg \max _{\theta} f(x \mid \theta)
\end{aligned}
$$

Solution:

```
\(\left(\hat{\theta}_{0}, \hat{\theta}_{1}\right):=r \operatorname{rand}()\);
while (...)
    for \(i=1\) to \(n\) do
            \(\gamma_{i}:=\phi\left(x_{i} ; \hat{\theta}_{1}, 1\right) /\left(\phi\left(x_{i} ; \hat{\theta}_{0}, 1\right)+\phi\left(x_{i} ; \hat{\theta}_{1}, 1\right)\right) ;\)
    \(\hat{\theta}_{0}:=\sum_{i=1}^{n}\left(1-\gamma_{i}\right) * x_{i} / \sum_{i=1}^{n}\left(1-\gamma_{i}\right) ;\)
    \(\hat{\theta}_{1}:=\sum_{i=1}^{n} \gamma_{i} * x_{i} / \sum_{i=1}^{n} \gamma_{i} ;\)
return \(\left(\hat{\theta}_{0}, \hat{\theta}_{1}\right)\);
```


Interactive algorithm assistant

Bhat, Agarwal, Gray, Vuduc (2010)

Features

- enter problems
- apply schemas
- undo/redo
- combinators

Status

- can solve several textbook examples of MLE, incl. via EM
- autotuning + more sophisticated code generation is planned
File Edit View Terminal Help

```
sooraj@lucy:~/mathProg/om$ om
            Objective Caml version 3.11.1
# load gaussian;;
    0m.Syntax.expr =
argmax{mu : R, ss : R}{
    pdf
    (let pick = normal mu ss in
    var x1 ~ pick in var x2 ~ pick in var x3 ~ pick in return (x1, x2, x3))
    (9, 28, 11)
    | 0 <= ss}
# ap ( let_simpl <&> pdf_simpl );;
        Om.Syntax.expr =
argmax{mu : R, ss : R}{
    ss^-1.500000 * %e^((9-mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
    -0.500000 + (11 - mu)^2/ss * -0.500000) * (2 * %pi)^-1.500000
    | 0<= ss}
# ap ( argmax_log <&> log_simpl <&> argmax_add );;
    : Om.Syntax.expr =
argmax{mu : R, ss : R}{
    -1.500000 * log ss + (9 - mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
    -0.500000 + (11 - mu)^2/ss * -0.500000
    | 0<= ss}
# ap descartes;;
    Om.Syntax.expr =
argmax{mu : R, ss : R}{
    -1.500000 * log ss + (9-mu)^2/ss * -0.500000 + (28-mu)^2/ss *
    -0.500000 + (11-mu)^2/ss * -0.500000
    | 0<= ss && 0 = -1.500000/ss + (9 - mu)^2 * ss^-2 * 0.500000 + (28 - mu)^
        2* ss^-2 * 0.500000 + (11-mu)^2 * ss^-2 * 0.500000 && 0 = 1/ss * (9 -
        mu) + 1/ss * (28 - mu) + 1/ss * (11 - mu)}
# ap ( rewrite undistr <&> rewrite factors_0 <&> simpl <&> back_solve None );;
    : Om.Syntax.expr =
argmax{mu : R, ss : R}{
    -1.500000 * log ss + (9 - mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
    -0.500000 + (11-mu)^2/ss * -0.500000
    | mu = 16.000000 && ss = 72.666667}

\section*{Conclusions}
- Automated bigM and convex-hull methods
- Beginnings of a formalization of probability and statistics
- Library of transformations
- Formalization of indexing provides:
- advances on previous MP languages: e.g. GAMS, AMPL, OPL
- fundamental improvements in time and space performance possible

\section*{Conclusions}
- Automated bigM and convex-hull methods
- Beginnings of a formalization of probability and statistics
- Library of transformations
- Formalization of indexing provides:
- advances on previous MP languages: e.g. GAMS, AMPL, OPL
- fundamental improvements in time and space performance possible
- challenges remain:
e.g. conversion of
\[
\bigvee_{i: \sigma} \bigwedge_{i^{\prime}: \sigma^{\prime}} e
\]
to indexed CNF
\[
\bigwedge_{f:\left(i: \sigma \rightarrow \sigma^{\prime}\right)} \bigvee_{i: \sigma}\left\{f(i) / i^{\prime}\right\} e
\]
not supported in current theory.```

