Formal Mathematical Languages

Ashish Agarwal
Yale University

CScADS Summer Workshop
Libraries and Autotuning for Petascale Applications
Snowbird, Utah
August 11, 2010

Motivation

- Bring more of mathematics to more scientists and engineers
- New Language: Express mathematical problems elegantly and formally
- Syntactic Transformations: Mechanically generate algorithms

Linear programs (LP)

$$
\begin{aligned}
& x_{1} \geq 1.0 \\
& x_{2} \geq 1.0 \\
& x_{1}+x_{2} \leq 5.0
\end{aligned}
$$

Linear programs (LP)

$$
\begin{gathered}
\max x_{1}-x_{2} \\
x_{1} \geq 1.0 \\
x_{2} \geq 1.0 \\
x_{1}+x_{2} \leq 5.0
\end{gathered}
$$

Linear programs (LP)

Cannot represent multiple polyhedra.

Declaring discrete choice - with disjunction

$$
\underbrace{\left[\begin{array}{c}
x_{1} \geq 1 \\
x_{2} \geq 1 \\
x_{1}+x_{2} \leq 5
\end{array}\right]}_{R^{1}} \underbrace{\left[\begin{array}{c}
5 \leq x_{1} \leq 8 \\
4 \leq x_{2} \leq 7
\end{array}\right]}_{R^{2}}
$$

Declaring discrete choice - with disjunction

- Language of DP extends LP with disjunction

Declaring discrete choice - with disjunction

- Language of DP extends LP with disjunction
- Few algorithms for solving DPs directly.

Declaring discrete choice - with integers

Mixed-integer linear programs (MILP)

- Basic idea: multiply terms by $y \in\{0,1\}$

$$
\begin{aligned}
& 0 \leq y \leq 1 \\
& x \leq 3.0 y+2.0(1-y)
\end{aligned}
$$

- if $y=1$, then $x \leq 3.0$
- if $y=0$, then $x \leq 2.0$

Declaring discrete choice - with integers

Mixed-integer linear programs (MILP)

- Basic idea: multiply terms by $y \in\{0,1\}$

$$
\begin{aligned}
& 0 \leq y \leq 1 \\
& x \leq 3.0 y+2.0(1-y)
\end{aligned}
$$

- if $y=1$, then $x \leq 3.0$
- if $y=0$, then $x \leq 2.0$
- Language of MILP extends LP with the integer type

Declaring discrete choice - with integers

Mixed-integer linear programs (MILP)

- Basic idea: multiply terms by $y \in\{0,1\}$

$$
\begin{aligned}
& 0 \leq y \leq 1 \\
& x \leq 3.0 y+2.0(1-y)
\end{aligned}
$$

- if $y=1$, then $x \leq 3.0$
- if $y=0$, then $x \leq 2.0$
- Language of MILP extends LP with the integer type

Example: single disjunctive constraint

Agarwal, Bhat, Gray, Grossman (PADL 2010)

Input

```
var x:<10.0, 100.0>
var w:<2.0, 50.0>
min x + w subject_to
(x <= w) \/ (x >= w + 4.0)
```


Output

```
var x:<10.0, 100.0>
var w:<2.0, 50.0>
min x + w subject_to
exists y1:[0, 1]
exists y2:[0, 1]
exists x1:<0.0, 100.0>
exists x2:<0.0, 100.0>
exists w1:<0.0, 50.0>
exists w2:<0.0, 50.0>
    w = w1 + w2,
    x = x1 + x2,
    y1 + y2 = 1,
    10.0 * y1 <= x1,
    x1 <= 100.0 * y1,
    2.0 * y1 <= w1,
    w1 <= 50.0 * y1,
    x1 <= w1,
    10.0 * y2 <= x2,
    x2 <= 100.0 * y2,
    2.0 * y2 <= w2,
    w2 <= 50.0 * y2,
    x2 >= w2 + 4.0 * y2
```


Example: single disjunctive constraint

Agarwal, Bhat, Gray, Grossman (PADL 2010)

Input

```
var x:<10.0, 100.0>
var w:<2.0, 50.0>
min x + w subject_to
(x <= w) \/ (x >= w + 4.0)
```

- Output generated in MPS and AMPL formats
- Implemented as a DSL embedded in OCaml

Output

```
var x:<10.0, 100.0>
var w:<2.0, 50.0>
min x + w subject_to
exists y1:[0, 1]
exists y2:[0, 1]
exists x1:<0.0, 100.0>
exists x2:<0.0, 100.0>
exists w1:<0.0, 50.0>
exists w2:<0.0, 50.0>
    w = w1 + w2,
    x = x1 + x2,
    y1 + y2 = 1,
    10.0 * y1 <= x1,
    x1 <= 100.0 * y1,
    2.0 * y1 <= w1,
    w1 <= 50.0 * y1,
    x1 <= w1,
    10.0 * y2 <= x2,
    x2 <= 100.0 * y2,
    2.0 * y2 <= w2,
    w2 <= 50.0 * y2,
    x2 >= w2 + 4.0 * y2
```


Switched flow process, comparison to ILOG Concert

Method	\#vars (\#binary)	\#constr. (\#IC)	time (sec)
flow-Concert	$1061(874)$	$1080(718)$	36.85
flow-IC	$477(291)$	$1001(438)$	11.60
flow-BM	$477(291)$	1198	3.37
flow-CH	$1194(631)$	2747	1.09

- All 3 of our methods improve on state-of-the-art.

Strip packing, comparison to expert

Method	\#vars (\#binary)	\#constr. (\#IC)	time (sec)
pack12-IC	$289(264)$	$342(264)$	1.83
pack12-BM	$289(264)$	342	1.22
pack12-CH	$1345(264)$	2718	168.38
pack12-BM-expert	$289(264)$	342	1.82
pack12-CH-expert	$1345(264)$	1662	149.57
pack21-IC	$883(840)$	$1071(840)$	24.44
pack21-BM	$883(840)$	1071	55.01
pack21-CH	$4243(840)$	8631	991.68
pack21-BM-expert	$883(840)$	1071	29.56
pack21-CH-expert	$4243(840)$	5271	>3600.00

- Our mechanizations perform just as well as expert encodings.

Indexing

Agarwal (2006)

- We solved a problem with 150,000 equations and 25,000 variables.
- How do you declare so many equations and variables?

Indexing

- We solved a problem with 150,000 equations and 25,000 variables.
- How do you declare so many equations and variables? Use index sets.

Indexing

- We solved a problem with 150,000 equations and 25,000 variables.
- How do you declare so many equations and variables? Use index sets.
- Indexed operators:

$$
\sum_{i=1}^{n} x_{i}
$$

- Families of equations:

$$
\forall i \in\{1, \ldots, n\} \quad x_{i+1}=x_{i}+y_{i}
$$

Indexing

- We solved a problem with 150,000 equations and 25,000 variables.
- How do you declare so many equations and variables? Use index sets.
- Indexed operators:

$$
\sum_{i=1}^{n} x_{i}
$$

- Families of equations:

$$
\forall i \in\{1, \ldots, n\} \quad x_{i+1}=x_{i}+y_{i}
$$

- Complex index sets in practice, e.g. job shop scheduling:

$$
\forall j \in J \quad \forall s \in S_{j} \quad \forall j^{\prime} \in \operatorname{Pre}_{j, s} \quad t_{j^{\prime}, s} \leq t_{j, s}
$$

Indexing Is A Generalization of Matrix Notation

- Rows $R=\{1, \ldots, M\}$
- Columns $S=\{1, \ldots, N\}$
- Matrix $A: R \times S \rightarrow \mathbb{R}$

Indexing Is A Generalization of Matrix Notation

- Rows $R=\{1, \ldots, M\}$
- Columns $S=\{1, \ldots, N\}$
- Matrix $A: R \times S \rightarrow \mathbb{R}$
- Matrix multiplication:
- Consider vector $x: S \rightarrow \mathbb{R}$
- Then matrix multiplication is a higher-order function

$$
\otimes:(R \times S \rightarrow \mathbb{R}) \times(S \rightarrow \mathbb{R}) \rightarrow(R \rightarrow \mathbb{R})
$$

Beyond Matrices

```
set JOBS = {a,b,c}
set STAGES(i) = case i of
    a => {s1,s2}
    | b => {s1,s3,s4}
    | c => {s3,s4}
```

set JOBS_STAGES = i:JOBS * STAGES[i]

Explicitly:

```
{(a,s1), (a,s2),
    (b,s1), (b,s3), (b,s4),
    (c,s3), (c,s4)}
```


Beyond Matrices

- Can now define non-rectangular data:
A : i:JOBS * STAGES[i] -> real

$$
A=\left[\begin{array}{llll}
A_{a, s 1} & A_{a, s 2} & & \\
A_{b, s 1} & & A_{b, s 3} & A_{b, s 4} \\
& & A_{c, s 3} & A_{c, s 4}
\end{array}\right]
$$

Beyond Matrices

- Can now define non-rectangular data:

$$
\begin{aligned}
& \text { A }: ~ i: \text { JOBS } * \text { STAGES [i] } \\
& A=\left[\begin{array}{llll}
A_{a, s 1} & A_{a, s 2} & & \\
A_{b, s 1} & & A_{b, s 3} & A_{b, s 4} \\
& & A_{c, s 3} & A_{c, s 4}
\end{array}\right]
\end{aligned}
$$

- Also support:
- Tensors
- Nested matrices
- Can have matrices with some elements as sub-matrices, and some as scalars or matrices of different dimensions

Beyond Matrices

- Can now define non-rectangular data:

$$
\begin{aligned}
& \text { A }: ~ i: \text { JOBS } * \text { STAGES [i] } \\
& A=\left[\begin{array}{llll}
A_{a, s 1} & A_{a, s 2} & & \\
A_{b, s 1} & & A_{b, s 3} & A_{b, s 4} \\
& & A_{c, s 3} & A_{c, s 4}
\end{array}\right]
\end{aligned}
$$

- Also support:
- Tensors
- Nested matrices
- Can have matrices with some elements as sub-matrices, and some as scalars or matrices of different dimensions

Types express exact nature of each value.

Memory Reduction

- Load this program:

$$
\forall i \in\{1, \ldots, n\} \quad x_{i+1}=x_{i}+y_{i}
$$

- Optimization software (AMPL, CPLEX, etc) expand this to:

$$
\begin{aligned}
& x_{2}=x_{1}+y_{1} \\
& x_{3}=x_{2}+y_{2} \\
& x_{4}=x_{3}+y_{3} \\
& x_{5}=x_{4}+y_{4}
\end{aligned}
$$

Memory Reduction

- Load this program:

$$
\forall i \in\{1, \ldots, n\} \quad x_{i+1}=x_{i}+y_{i}
$$

- Optimization software (AMPL, CPLEX, etc) expand this to:

$$
\begin{aligned}
& x_{2}=x_{1}+y_{1} \\
& x_{3}=x_{2}+y_{2} \\
& x_{4}=x_{3}+y_{3} \\
& x_{5}=x_{4}+y_{4}
\end{aligned}
$$

- We retain indexing structure:

Memory requirements reduced from $O(n)$ to $O(1)$.

Computational Improvements

- Input to our software:

$$
\bigvee_{i:[1 . .10]} w \geq x_{i}+4.0
$$

- Our software's output:

$$
\bigwedge_{i:[1 . .10]}\left[\begin{array}{c}
10.0 * y_{i} \leq w_{i}^{\prime} \\
w_{i}^{\prime} \leq 90.0 * y_{i} \\
\bigwedge_{d:[1 . .10]} \\
w_{i}^{\prime} \geq x_{i, i}^{\prime}+4.0 * y_{i}
\end{array}\right]
$$

Computational Improvements

- Input to our software:

$$
\bigvee_{i:[1 . .10]} w \geq x_{i}+4.0
$$

- Our software's output:

$$
\bigwedge_{i:[1 . .10]}\left[\begin{array}{c}
10.0 * y_{i} \leq w_{i}^{\prime} \\
w_{i}^{\prime} \leq 90.0 * y_{i} \\
\bigwedge_{d:[1 . .10]}^{w_{i}^{\prime} \geq x_{i, i}^{\prime}+4.0 * y_{i}}
\end{array}\right]
$$

Reformulation time reduced from $O(n)$ to $O(1)$.

"Loop" Optimization (Easy)

$$
\begin{aligned}
& \forall i \in\{1, \ldots, 5\} \quad \forall j \in \\
& \{1, \ldots, 10\} \quad x_{i, j}=y_{i-1, j} \\
& \text { for } i=1 \text { to } 5 \text { do } \\
& \text { for } j=1 \text { to } 10 \text { do } \\
& \quad x[i, j]=y[i-1, j] \\
& \text { done } \\
& \text { done }
\end{aligned}
$$

"Loop" Optimization (Easy)

$$
\begin{aligned}
& \forall i \in\{1, \ldots, 5\} \quad \forall j \in \\
& \{1, \ldots, 10\} \quad x_{i, j}=y_{i-1, j} \\
& \text { for } i=1 \text { to } 5 \text { do } \\
& \text { for } j=1 \text { to } 10 \text { do } \\
& \quad \times[i, j]=y[i-1, j] \\
& \text { done } \\
& \text { done }
\end{aligned}
$$

$$
\begin{aligned}
& \forall j \in\{1, \ldots, 10\} \quad \forall i \in \\
& \{1, \ldots, 5\} \quad x_{i, j}=y_{i-1, j} \\
& \text { for } j=1 \text { to } 10 \text { do } \\
& \text { for } i=1 \text { to } 5 \text { do } \\
& \quad x[i, j]=y[i-1, j] \\
& \text { done } \\
& \text { done }
\end{aligned}
$$

Standard rules of first-order logic may apply.

"Loop" Optimization (Hard)

- What if there are dependent types?

$$
\begin{aligned}
& \forall i \in\{1, \ldots, 5\} \quad \forall j \in\{1, \ldots, i\} \quad x_{i, j}=y_{i-1, j} \\
& \text { for } i=1 \text { to } 5 \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& \quad x[i, j]=y[i-1, j] \\
& \text { done } \\
& \text { done }
\end{aligned}
$$

Conjunctive Normal Form with Dependent Types

- Indexed DNF expression

$$
\bigvee_{i \in \sigma} \bigwedge_{i^{\prime} \in \sigma^{\prime}} e
$$

- can be converted to indexed CNF

$$
\bigwedge_{f \in\left(i: \sigma \rightarrow \sigma^{\prime}\right)} \bigvee_{i \in \sigma}\left\{f(i) / i^{\prime}\right\} e
$$

- by introducing index over function space.
- Other solutions, e.g. introducing slack variables, also possible.

What Are Random Variables?

- Wasserman (2004) says:
A random variable is a mapping

$$
X: \Omega \rightarrow \mathbb{R}
$$

that assigns a real number $X(\omega)$ to each outcome ω.

What Are Random Variables?

- Wasserman (2004) says:
A random variable is a mapping

$$
X: \Omega \rightarrow \mathbb{R}
$$

that assigns a real number $X(\omega)$ to each outcome ω.
However:

- Treated as real: $\mathbb{P}(X \geq 5)$
- Not random:

We write

$$
X \sim \operatorname{Bernoulli}(p)
$$

to mean that X is exactly distributed as

$$
f(x)=p^{x}(1-p)^{1-x} \text { for } x \in\{0,1\}
$$

What Are Random Variables?

Not variables:

- Cannot substitute occurrences of X for anything. e.g. In $\mathbb{P}(X \geq 5)$, cannot replace X with anything that preserves meaning of the statement.
- Dependence matters.
e.g. Two random variables X and Y, both distributed as Bernoulli(0.5), each 0 or 1 with probability 0.5 . What is $\mathbb{P}(X+Y=2)$?
Perhaps 0.25 ? But not if $Y=1-X$.

What Are Random Variables?

Not variables:

- Cannot substitute occurrences of X for anything. e.g. In $\mathbb{P}(X \geq 5)$, cannot replace X with anything that preserves meaning of the statement.
- Dependence matters.
e.g. Two random variables X and Y, both distributed as Bernoulli(0.5), each 0 or 1 with probability 0.5 . What is $\mathbb{P}(X+Y=2)$?
Perhaps 0.25 ? But not if $Y=1-X$.
Random variables are neither random nor variable.

Previous Work

- Giry (1981), Jones and Plotkin (1989)

Probability distributions are a monad.

- Kozen (1981)

Formalized semantics.

- Ramsey and Pfeffer (2002) Efficient expectations, but discrete distributions only.
- Park, Pfenning, and Thrun (2004) Continuous distributions also, but support only sampling.
- Erwig and Kollmansberger (2006)

Provide Haskell library, but discrete distributions only, computational efficiency not optimized.

Previous Work

- Giry (1981), Jones and Plotkin (1989)

Probability distributions are a monad.

- Kozen (1981)

Formalized semantics.

- Ramsey and Pfeffer (2002) Efficient expectations, but discrete distributions only.
- Park, Pfenning, and Thrun (2004)

Continuous distributions also, but support only sampling.

- Erwig and Kollmansberger (2006)

Provide Haskell library, but discrete distributions only, computational efficiency not optimized.

Our goal: Unify these results in a single system.

Syntax: Probability Language

Bhat, Agarwal, Gray, Vuduc (2010)

$$
\begin{aligned}
T:: & \text { Bool } \mid \text { Int } \mid \text { Real }\left|T_{1} \times T_{2}\right| \text { Prob } T \\
E: & =x \mid \text { true } \mid \text { false } \\
& |r| E_{1}+E_{2} \mid E_{1} \times E_{2} \\
& \left|\left(E_{1}, E_{2}\right)\right| \text { fst } E \mid \text { snd } E \\
& \mid \text { if } E_{1} \text { then } E_{2} \text { else } E_{3}\left|E_{1}=E_{2}\right| E_{1} \leq E_{2} \\
& \mid \text { uniform } \mid \text { return } E \mid \text { let } x \sim E_{1} \text { in } E_{2}
\end{aligned}
$$

Gaussian Model

Mixture of Gaussians Model

Trying alternative statistical models

Formulation:

$$
\begin{aligned}
& X_{i} \sim \operatorname{Normal}(\theta, 1) \\
& \hat{\theta}=\arg \max _{\theta} f(x \mid \theta)
\end{aligned}
$$

Trying alternative statistical models

Formulation:

$$
\begin{aligned}
& X_{i} \sim \operatorname{Normal}(\theta, 1) \\
& \hat{\theta}=\arg \max _{\theta} f(x \mid \theta)
\end{aligned}
$$

Solution:

$$
\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Trying alternative statistical models

Formulation:
$X_{i} \sim \operatorname{Normal}(\theta, 1)$
$\hat{\theta}=\arg \max _{\theta} f(x \mid \theta)$

Formulation:

$$
Z_{i} \sim \operatorname{Bernoulli}(0.5)
$$

$$
X_{i} \sim \operatorname{Normal}\left(\left(1-Z_{i}\right) \theta_{0}+Z_{i} \theta_{1}, 1\right)
$$

$$
\hat{\theta}=\arg \max _{\theta} f(x \mid \theta)
$$

Solution:

$$
\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Trying alternative statistical models

Formulation:
$X_{i} \sim \operatorname{Normal}(\theta, 1)$
$\hat{\theta}=\arg \max _{\theta} f(x \mid \theta)$
Solution:

$$
\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Formulation:

$$
\begin{aligned}
& Z_{i} \sim \operatorname{Bernoulli}(0.5) \\
& X_{i} \sim \operatorname{Normal}\left(\left(1-Z_{i}\right) \theta_{0}+Z_{i} \theta_{1}, 1\right) \\
& \hat{\theta}=\arg \max _{\theta} f(x \mid \theta)
\end{aligned}
$$

Solution:

```
\(\left(\hat{\theta}_{0}, \hat{\theta}_{1}\right):=r \operatorname{rand}()\);
while (...)
    for \(i=1\) to \(n\) do
            \(\gamma_{i}:=\phi\left(x_{i} ; \hat{\theta}_{1}, 1\right) /\left(\phi\left(x_{i} ; \hat{\theta}_{0}, 1\right)+\phi\left(x_{i} ; \hat{\theta}_{1}, 1\right)\right) ;\)
    \(\hat{\theta}_{0}:=\sum_{i=1}^{n}\left(1-\gamma_{i}\right) * x_{i} / \sum_{i=1}^{n}\left(1-\gamma_{i}\right) ;\)
    \(\hat{\theta}_{1}:=\sum_{i=1}^{n} \gamma_{i} * x_{i} / \sum_{i=1}^{n} \gamma_{i} ;\)
return \(\left(\hat{\theta}_{0}, \hat{\theta}_{1}\right)\);
```


Interactive algorithm assistant

Features

- enter problems
- apply schemas
- undo/redo
- combinators

Status

- can solve several textbook examples of MLE, incl. via EM
- autotuning + more sophisticated code generation is planned

```
Eile Edit View Terminal Help
sooraj@lucy:~/mathProg/om$ om
    Objective Caml version 3.11.1
* load gaussian;;
    Om.Syntax.expr =
argmax{mu : R, ss : R}{
    pdf
    (let pick = normal mu ss in
    var x1 ~ pick in var x2 ~ pick in var x3 ~ pick in return (x1, x2, x3))
    (9, 28, 11)
    | 0<= ss}
# ap ( let simpl <&> pdf_simpl );;
    Om.Syntax.expr =
argmax{mu : R, ss : R}{
    ss^-1.500000 * %e^((9 - mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
    -0.500000 + (11 - mu)^2/ss * -0.500000) * (2 * %pi)^-1.500000
    | 0<= ss}
* ap ( argmax_log <&> log_simpl <&> argmax_add );;
    : Om.Syntax.expr =
argmax{mu : R, ss : R}{
    -1.500000 * log ss + (9 - mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
    -0.500000 + (11 - mu)^2/ss * -0.500000
    | 0<= ss}
# ap descartes;;
    Om.Syntax.expr =
argmax{mu : R, ss : R}{
    -1.500000 * log ss + (9 - mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
    -0.500000 + (11-mu)^2/ss * -0.500000
    | 0 <= ss && 0 = -1.500000/ss + (9 - mu)^2 * ss^-2 * 0.500000 + (28 - mu)^
    2 * ss^-2 * 0.500000 + (11 - mu)^2 * ss^-2 * 0.500000 && 0 = 1/ss * (9 -
        mu) +1/ss * (28 - mu) + 1/ss * (11 - mu)}
    ap ( rewrite undistr <&> rewrite factors_0 <&> simpl <&> back_solve None );;
        0m.Syntax.expr =
argmax{mu : R, ss : R}{
    -1.500000 * log ss + (9 - mu)^2/ss * -0.500000 + (28 - mu)^2/ss *
    -0.500000 + (11 - mu)^2/ss * -0.500000
    | mu = 16.000000 && ss = 72.666667}

\section*{Conclusions}
- Richly typed language covering:
- linear algebra
- indexing
- Boolean logic
- optimization
- probability and statistics
- Library of transformations:
- bigM and convex-hull methods for disjunctive constraints
- Boolean propositions to pure integer constraints
- several specific to probablity distributions
- simple computer algebra: e.g. \(0 x \mapsto 0\)
- need many more

\section*{Conclusions}
- Richly typed language covering:
- linear algebra
- indexing
- Boolean logic
- optimization
- probability and statistics
- Library of transformations:
- bigM and convex-hull methods for disjunctive constraints
- Boolean propositions to pure integer constraints
- several specific to probablity distributions
- simple computer algebra: e.g. \(0 x \mapsto 0\)
- need many more
- Next step: autotuning!

\section*{Acknowledgments}
- Optimization:

Ignacio Grossmann (Carnegie Mellon)
Nick Sawaya and Vikas Goel (Exxon Mobil)
- Indexing:

Bob Harper (Carnegie Mellon)
- Statistics:

Sooraj Bhat and Alex Gray (GeorgiaTech)
- Linear algebra, HPC, Autotuning:

Rich Vuduc (GeorgiaTech)```

