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Motivation

Bring more of mathematics to more scientists and engineers

New Language: Express mathematical problems elegantly and formally

Syntactic Transformations: Mechanically generate algorithms
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Linear programs (LP)
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Linear programs (LP)
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Cannot represent multiple polyhedra.
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Declaring discrete choice – with disjunction
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Declaring discrete choice – with disjunction
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Language of DP extends LP with disjunction
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Declaring discrete choice – with disjunction
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Language of DP extends LP with disjunction

Few algorithms for solving DPs directly.
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Declaring discrete choice – with integers
Mixed-integer linear programs (MILP)

Basic idea: multiply terms by y ∈ {0, 1}

0 ≤ y ≤ 1
x ≤ 3.0y + 2.0(1 − y)

if y = 1, then x ≤ 3.0

if y = 0, then x ≤ 2.0
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Goal:
Express as DP

(intuitive)
−→

Convert to MILP
(accepted by solvers)



Example: single disjunctive constraint
Agarwal, Bhat, Gray, Grossman (PADL 2010)

Input

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

(x <= w) \/ (x >= w + 4.0)

Output

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

exists y1:[0, 1]

exists y2:[0, 1]

exists x1:<0.0, 100.0>

exists x2:<0.0, 100.0>

exists w1:<0.0, 50.0>

exists w2:<0.0, 50.0>

w = w1 + w2,

x = x1 + x2,

y1 + y2 = 1,

10.0 * y1 <= x1,

x1 <= 100.0 * y1,

2.0 * y1 <= w1,

w1 <= 50.0 * y1,

x1 <= w1,

10.0 * y2 <= x2,

x2 <= 100.0 * y2,

2.0 * y2 <= w2,

w2 <= 50.0 * y2,

x2 >= w2 + 4.0 * y2

Ashish Agarwal () 6 / 27



Example: single disjunctive constraint
Agarwal, Bhat, Gray, Grossman (PADL 2010)

Input

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

(x <= w) \/ (x >= w + 4.0)

Output generated in MPS
and AMPL formats

Implemented as a DSL
embedded in OCaml

Output

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

exists y1:[0, 1]

exists y2:[0, 1]

exists x1:<0.0, 100.0>

exists x2:<0.0, 100.0>

exists w1:<0.0, 50.0>

exists w2:<0.0, 50.0>
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y1 + y2 = 1,

10.0 * y1 <= x1,

x1 <= 100.0 * y1,

2.0 * y1 <= w1,

w1 <= 50.0 * y1,

x1 <= w1,
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Switched flow process, comparison to ILOG Concert

Method #vars (#binary) #constr. (#IC) time (sec)

flow-Concert 1061 (874) 1080 (718) 36.85
flow-IC 477 (291) 1001 (438) 11.60
flow-BM 477 (291) 1198 3.37
flow-CH 1194 (631) 2747 1.09

All 3 of our methods improve on state-of-the-art.
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Strip packing, comparison to expert

Method #vars (#binary) #constr. (#IC) time (sec)
pack12-IC 289 (264) 342 (264) 1.83
pack12-BM 289 (264) 342 1.22
pack12-CH 1345 (264) 2718 168.38
pack12-BM-expert 289 (264) 342 1.82
pack12-CH-expert 1345 (264) 1662 149.57

pack21-IC 883 (840) 1071 (840) 24.44
pack21-BM 883 (840) 1071 55.01
pack21-CH 4243 (840) 8631 991.68
pack21-BM-expert 883 (840) 1071 29.56
pack21-CH-expert 4243 (840) 5271 > 3600.00

Our mechanizations perform just as well as expert encodings.
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Indexing
Agarwal (2006)

We solved a problem with 150,000 equations and 25,000 variables.

How do you declare so many equations and variables?
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Indexing
Agarwal (2006)

We solved a problem with 150,000 equations and 25,000 variables.

How do you declare so many equations and variables?
Use index sets.

Indexed operators:
n∑

i=1

xi

Families of equations:

∀i ∈ {1, . . . , n} xi+1 = xi + yi

Complex index sets in practice, e.g. job shop scheduling:

∀j ∈ J ∀s ∈ Sj ∀j ′ ∈ Prej ,s tj ′,s ≤ tj ,s
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Indexing Is A Generalization of Matrix Notation

Rows R = {1, . . . ,M}

Columns S = {1, . . . ,N}

Matrix A : R × S → R
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Indexing Is A Generalization of Matrix Notation

Rows R = {1, . . . ,M}

Columns S = {1, . . . ,N}

Matrix A : R × S → R

Matrix multiplication:

Consider vector x : S → R

Then matrix multiplication is a higher-order function

⊗ : (R × S → R) × (S → R) → (R → R)
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Beyond Matrices

set JOBS = {a,b,c}

set STAGES(i) = case i of

a => {s1,s2}

| b => {s1,s3,s4}

| c => {s3,s4}

set JOBS_STAGES = i:JOBS * STAGES[i]

Explicitly:

{(a,s1), (a,s2),

(b,s1), (b,s3), (b,s4),

(c,s3), (c,s4)}
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Beyond Matrices

Can now define non-rectangular data:

A : i:JOBS * STAGES[i] -> real

A =





Aa,s1 Aa,s2

Ab,s1 Ab,s3 Ab,s4

Ac,s3 Ac,s4
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Tensors

Nested matrices
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scalars or matrices of different dimensions
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Types express exact nature of each value.



Memory Reduction

Load this program:

∀i ∈ {1, . . . , n} xi+1 = xi + yi

Optimization software (AMPL, CPLEX, etc) expand this to:

x2 = x1 + y1

x3 = x2 + y2

x4 = x3 + y3

x5 = x4 + y4

...
...

...
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Memory Reduction

Load this program:

∀i ∈ {1, . . . , n} xi+1 = xi + yi

Optimization software (AMPL, CPLEX, etc) expand this to:

x2 = x1 + y1

x3 = x2 + y2

x4 = x3 + y3

x5 = x4 + y4

...
...

...

We retain indexing structure:
Memory requirements reduced from O(n) to O(1).
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Computational Improvements

Input to our software:

∨

i :[1..10]

w ≥ xi + 4.0

Our software’s output:

∧

i :[1..10]










10.0 ∗ yi ≤ w ′

i

w ′

i ≤ 90.0 ∗ yi

∧

d:[1..10]

[
5.0 ∗ yi ≤ x ′

i ,d

x ′

i ,d ≤ 75.0 ∗ yi

]

w ′

i ≥ x ′

i ,i + 4.0 ∗ yi
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Reformulation time reduced from O(n) to O(1).



“Loop” Optimization (Easy)

∀i ∈ {1, . . . , 5} ∀j ∈
{1, . . . , 10} xi ,j = yi−1,j

for i = 1 to 5 do

for j = 1 to 10 do

x[i, j] = y[i-1, j]

done

done

∀j ∈ {1, . . . , 10} ∀i ∈
{1, . . . , 5} xi ,j = yi−1,j

for j = 1 to 10 do

for i = 1 to 5 do

x[i, j] = y[i-1, j]

done

done
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Standard rules of first-order logic may apply.



“Loop” Optimization (Hard)

What if there are dependent types?

∀i ∈ {1, . . . , 5} ∀j ∈ {1, . . . , i} xi ,j = yi−1,j

for i = 1 to 5 do

for j = 1 to i do

x[i, j] = y[i-1, j]

done

done
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Conjunctive Normal Form with Dependent Types

Indexed DNF expression
∨

i∈σ

∧

i ′∈σ′

e

can be converted to indexed CNF

∧

f ∈(i :σ→σ′)

∨

i∈σ

{
f (i) /i ′

}
e

by introducing index over function space.

Other solutions, e.g. introducing slack variables, also possible.
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What Are Random Variables?

Wasserman (2004) says:

A random variable is a mapping
X : Ω → R

that assigns a real number X (ω) to each outcome ω.
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What Are Random Variables?

Wasserman (2004) says:

A random variable is a mapping
X : Ω → R

that assigns a real number X (ω) to each outcome ω.

However:

Treated as real: P(X ≥ 5)

Not random:
We write

X ∼ Bernoulli(p)

to mean that X is exactly distributed as

f (x) = px(1 − p)1−x for x ∈ {0, 1}
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What Are Random Variables?

Not variables:

Cannot substitute occurrences of X for anything.
e.g. In P(X ≥ 5), cannot replace X with anything that preserves
meaning of the statement.

Dependence matters.
e.g. Two random variables X and Y , both distributed as
Bernoulli(0.5), each 0 or 1 with probability 0.5. What is
P(X + Y = 2)?

Perhaps 0.25? But not if Y = 1 − X .
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Random variables are neither random nor variable.



Previous Work

Giry (1981), Jones and Plotkin (1989)
Probability distributions are a monad.

Kozen (1981)
Formalized semantics.

Ramsey and Pfeffer (2002)
Efficient expectations, but discrete distributions only.

Park, Pfenning, and Thrun (2004)
Continuous distributions also, but support only sampling.

Erwig and Kollmansberger (2006)
Provide Haskell library, but discrete distributions only, computational
efficiency not optimized.
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Our goal: Unify these results in a single system.



Syntax: Probability Language
Bhat, Agarwal, Gray, Vuduc (2010)

T ::= Bool | Int | Real | T1 × T2 | Prob T

E ::= x | true | false

| r | E1 + E2 | E1 × E2

| (E1,E2) | fst E | snd E

| if E1 then E2 else E3 | E1 = E2 | E1 ≤ E2

| uniform | return E | let x ∼ E1 in E2
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Gaussian Model
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Mixture of Gaussians Model

150 160 170 180

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Height (cm)

Ashish Agarwal () 23 / 27



Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)
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Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)

Solution:

θ̂ =
1

n

n∑

i=1

xi

Formulation:

Zi ∼ Bernoulli(0.5)

Xi ∼ Normal((1 − Zi)θ0 + Ziθ1, 1)

θ̂ = arg max
θ

f (x | θ)
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Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)

Solution:

θ̂ =
1

n

n∑

i=1

xi

Formulation:

Zi ∼ Bernoulli(0.5)

Xi ∼ Normal((1 − Zi)θ0 + Ziθ1, 1)

θ̂ = arg max
θ

f (x | θ)

Solution:

(θ̂0, θ̂1) := rand ();

while (...)

for i = 1 to n do

γi := φ(xi ; θ̂1,1)/(φ(xi ; θ̂0,1)+φ(xi ; θ̂1,1));

θ̂0 :=
Pn

i=1(1-γi )*xi /
Pn

i=1(1-γi );

θ̂1 :=
Pn

i=1 γi *xi /
Pn

i=1 γi ;

return (θ̂0, θ̂1);
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Interactive algorithm assistant

Features

enter problems

apply schemas

undo/redo

combinators

Status

can solve several
textbook examples of
MLE, incl. via EM

autotuning + more
sophisticated code
generation is planned
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Conclusions

Richly typed language covering:

linear algebra
indexing
Boolean logic
optimization
probability and statistics

Library of transformations:

bigM and convex-hull methods for disjunctive constraints
Boolean propositions to pure integer constraints
several specific to probablity distributions
simple computer algebra: e.g. 0x 7→ 0
need many more
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Conclusions

Richly typed language covering:

linear algebra
indexing
Boolean logic
optimization
probability and statistics

Library of transformations:

bigM and convex-hull methods for disjunctive constraints
Boolean propositions to pure integer constraints
several specific to probablity distributions
simple computer algebra: e.g. 0x 7→ 0
need many more

Next step: autotuning!
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