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Motivation

@ Bring more of mathematics to more scientists and engineers
@ New Language: Express mathematical problems elegantly and formally

@ Syntactic Transformations: Mechanically generate algorithms
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Linear programs (LP)
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Linear programs (LP)

X2
47 max X; — X2
31 x1 > 1.0
2 1 X2 > 1.0
1 x1+x <5.0
0 — T X1
01 2 3 4

Cannot represent multiple polyhedra.

Ashish Agarwal () 3 /27



Declaring discrete choice — with disjunction
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49 x1;1 Ssx =8
3 2= 4<x<7
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Declaring discrete choice — with disjunction

O = N Wk ot 3
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@ Language of DP extends LP with disjunction
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Declaring discrete choice — with disjunction
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@ Language of DP extends LP with disjunction

@ Few algorithms for solving DPs directly.
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Declaring discrete choice — with integers
Mixed-integer linear programs (MILP)

@ Basic idea: multiply terms by y € {0,1}

0<y<l1
x < 3.0y +2.0(1 —y)

o if y=1, then x < 3.0
o if y=0, then x < 2.0

Ashish Agarwal ()

5 /27



Declaring discrete choice — with integers
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Declaring discrete choice — with integers
Mixed-integer linear programs (MILP)

Basic idea: multiply terms by y € {0,1}

0<y<l1
x < 3.0y +2.0(1 —y)

if y =1, then x < 3.0
if y =0, then x <2.0
Language of MILP extends LP with the integer type

Express as DP Convert to MILP

I: S
Goa (intuitive) —> (accepted by solvers)
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Example: single disjunctive constraint
Agarwal, Bhat, Gray, Grossman (PADL 2010)

Input Output

var x:<10.0, 100.0> var x:<10.0, 100.0>
var w:<2.0, 50.0> var w:<2.0, 50.0>
min x + w subject_to min x + w subject_to

(x <=w) \/ (x> w+4.0)

exists y1:[0, 1]
exists y2:[0, 1]
exists x1:<0.0, 100.0>
exists x2:<0.0, 100.0>
exists w1:<0.0, 50.0>
exists w2:<0.0, 50.0>

w=wl + w2,

x = x1 + x2,

yi+y2 =1,

10.0 * y1 <= x1,
x1 <= 100.0 * y1,
2.0 x y1 <= wi,
wl <= 50.0 * y1,
x1 <= wil,

10.0 * y2 <= x2,

x2 <= 100.0 * y2,
2.0 *x y2 <= w2,

w2 <= 50.0 * y2,

X2 >= w2 + 4.0 * y2
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Example: single disjunctive constraint

Agarwal, Bhat, Gray, Grossman (PADL 2010)

Input

var x:<10.0, 100.0>
var w:<2.0, 50.0>

min x + w subject_to
(x<=w) \/ x> v+ 4.0

@ Output generated in MPS
and AMPL formats

@ Implemented as a DSL
embedded in OCaml

Ashish Agarwal ()

Output

var x:<10.0, 100.0>
var w:<2.0, 50.0>

min x + w subject_to

exists y1:[0, 1]
exists y2:[0, 1]
exists x1:<0.0, 100.0>
exists x2:<0.0, 100.0>
exists w1:<0.0, 50.0>
exists w2:<0.0, 50.0>

w=wl + w2,

x = x1 + x2,

yl+y2 =1,

10.0 * y1 <= x1,
x1 <= 100.0 * y1,
2.0 x y1 <= wil,
wl <= 50.0 * yi1,
x1 <= wil,

10.0 * y2 <= x2,

x2 <= 100.0 * y2,
2.0 x y2 <= w2,

w2 <= 50.0 * y2,

X2 >= w2 + 4.0 * y2
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Switched flow process, comparison to ILOG Concert

Method #vars (#binary) #constr. (#IC) time (sec)
flow-Concert 1061 (874) 1080 (718) 36.85
flow-1C 477 (291) 1001 (438) 11.60
flow-BM 477 (291) 1198 3.37
flow-CH 1194 (631) 2747 1.09

@ All 3 of our methods improve on state-of-the-art.

Ashish Agarwal () 7/ 27



Strip packing, comparison to expert

Method #vars (#binary)  #tconstr. (#IC)  time (sec)
pack12-1C 289 (264) 342 (264) 183
pack12-BM 289 (264) 342 1.22
pack12-CH 1345 (264) 2718 168.38
pack12-BM-expert 289 (264) 342 1.82
pack12-CH-expert 1345 (264) 1662 149.57
pack21-1C 883 (840) 1071 (840) 2444
pack21-BM 883 (840) 1071 55.01
pack21-CH 4243 (840) 8631 991.68
pack21-BM-expert 883 (840) 1071 29.56
pack21-CH-expert 4243 (840) 5271 > 3600.00
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@ Our mechanizations perform just as well as expert encodings.
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Indexing
Agarwal (2006)

@ We solved a problem with 150,000 equations and 25,000 variables.
@ How do you declare so many equations and variables?

Ashish Agarwal () 9 /27



Indexing
Agarwal (2006)

@ We solved a problem with 150,000 equations and 25,000 variables.

@ How do you declare so many equations and variables?
Use index sets.

Ashish Agarwal () 9 /27



Indexing
Agarwal (2006)

@ We solved a problem with 150,000 equations and 25,000 variables.

@ How do you declare so many equations and variables?
Use index sets.

@ Indexed operators:
n
2%
i=1
@ Families of equations:

Vie{l,...,n} xit1=x+y
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Indexing
Agarwal (2006)

(4]

We solved a problem with 150,000 equations and 25,000 variables.

How do you declare so many equations and variables?
Use index sets.

(]

(4]

Indexed operators:

n
2%
i=1

(]

Families of equations:

Vie{l,...,n} xit1=x+y

(]

Complex index sets in practice, e.g. job shop scheduling:

Vied Vse§; Vi € Prejs tps <ts
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Indexing Is A Generalization of Matrix Notation

® Rows R=1{1,...,M}
@ Columns S ={1,...,N}
@ Matrix A: R xS —R
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Indexing Is A Generalization of Matrix Notation

Rows R ={1,..., M}
Columns S ={1,... N}
Matrix A: Rx S — R
Matrix multiplication:

Consider vector x : S — R

e 6 © ¢ ¢ ¢

Then matrix multiplication is a higher-order function

R:(RxS—>R)x(S—R)— (R—R)
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Beyond Matrices

set JOBS = {a,b,c}

set STAGES(i) = case i of
a => {s1,s2}

| b => {s1,s3,s4}
c

=> {s3,s4}
set JOBS_STAGES = i:JOBS * STAGES[il
Explicitly:

{(a,s1), (a,s2),

(b,s1), (b,s3), (b,s4d),
(c,s3), (c,sd)}
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Beyond Matrices

@ Can now define non-rectangular data:
A : i:JOBS * STAGES[i] -> real

Aa,sl Aa,s2

A= | Aps1 Aps3 Apsa
Ac,s3 Ac,s4
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Beyond Matrices

(]

Can now define non-rectangular data:
A : 1:J0BS * STAGES[i] -> real

Aa sl Aa,s2

)

A= | Apst Abs3  Absa
Ac,s3 Ac,s4
Also support:
Tensors
Nested matrices

Can have matrices with some elements as sub-matrices, and some as
scalars or matrices of different dimensions
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Beyond Matrices

Can now define non-rectangular data:
A : 1:J0BS * STAGES[i] -> real

Aa sl Aa,s2

)

A= | Apst Abs3  Absa
Ac,s3 Ac,s4
Also support:
Tensors
Nested matrices

Can have matrices with some elements as sub-matrices, and some as
scalars or matrices of different dimensions

Types express exact nature of each value.
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Memory Reduction

@ Load this program:
Vi e {1,...,n} Xi+1 = X; t Vi
@ Optimization software (AMPL, CPLEX, etc) expand this to:

X2 =Xx1+Wy
X3 =X2+ )2
X4 = X3+ Y3

X5 = X4 + Ya
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Memory Reduction

@ Load this program:
Vi e {1,...,n} Xiy1 =X+ Vi
@ Optimization software (AMPL, CPLEX, etc) expand this to:

X2 =Xx1+Wy
X3 =X2+ )2
X4 = X3+ Y3

X5 = X4 + Ya

@ We retain indexing structure:
Memory requirements reduced from O(n) to O(1).
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Computational Improvements

@ Input to our software:

\/ w > x;+4.0

i:[1..10]
@ Our software’s output:
10.0 x y; < wj i
w! < 90.0 * y;
/\ /\ [5.0*y;§x,f’d]
i[1-10] | 41 1) X/{,d <75.0x*y;
w! > X,{J- +4.0x*y;
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Computational Improvements

@ Input to our software:

\/ w > x;+4.0

i:[1..10]
@ Our software’s output:
10.0 x y; < wj i
w! < 90.0 % y;
/\ /\ [5.0*y,-§x;7d]
i[1.20] | .11, 10] Xia <750+
w! > X,{J- +4.0x*y;

Reformulation time reduced from O(n) to O(1).
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“Loop” Optimization (Easy)

Vie{l,...,5} Vje Vjie{l,...,10} Vie
{17 SRR 10} Xij = Yi-1,j {17 e >5} Xij = Yi—1,
for i =1 to 5 do for j =1 to 10 do
for j = 1 to 10 do for i = 1 to 5 do
x[i, j1 = y[i-1, jl x[i, j1 = yli-1, j]
done done
done done
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“Loop” Optimization (Easy)

Vie{l,...,5) Vje
{1,,10} Xij = Yi-1,j

for i =1 to 5 do
for j = 1 to 10 do
x[i, j1 = yli-1, jl
done
done

Vjie{l,...,10} Vie
{1,...,5} Xxij=vyi-1j

for j =1 to 10 do
for i =1 to 5 do
x[i, j1 = yli-1, j]
done
done

Standard rules of first-order logic may apply.
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“Loop” Optimization (Hard)

@ What if there are dependent types?
VI'E{].,...,5} VjE{l,...,i} Xij = Yi-1j
for i =1 to 5 do

for j =1 to i do
x[i, jl = yli-1, j]
done
done
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Conjunctive Normal Form with Dependent Types

@ Indexed DNF expression

V Ae

i€oi'eo’

@ can be converted to indexed CNF

A VAf()/i}e

fe(iio—a')i€o

@ by introducing index over function space.

@ Other solutions, e.g. introducing slack variables, also possible.
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What Are Random Variables?

@ Wasserman (2004) says:

A random variable is a mapping
X:Q—=R
that assigns a real number X(w) to each outcome w.
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What Are Random Variables?

@ Wasserman (2004) says:

A random variable is a mapping
X:Q2—-R

that assigns a real number X(w) to each outcome w.

However:
@ Treated as real: P(X > 5)

@ Not random:

We write
X ~ Bernoulli(p)

to mean that X is exactly distributed as

f(x) = p*(1 — p)* ™ for x € {0,1}
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What Are Random Variables?

Not variables:

o Cannot substitute occurrences of X for anything.
e.g. In P(X > 5), cannot replace X with anything that preserves
meaning of the statement.

@ Dependence matters.
e.g. Two random variables X and Y/, both distributed as
Bernoulli(0.5), each 0 or 1 with probability 0.5. What is
P(X+Y =2)?

Perhaps 0.257 But notif Y =1 — X.
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What Are Random Variables?

Not variables:

o Cannot substitute occurrences of X for anything.
e.g. In P(X > 5), cannot replace X with anything that preserves
meaning of the statement.

@ Dependence matters.
e.g. Two random variables X and Y/, both distributed as
Bernoulli(0.5), each 0 or 1 with probability 0.5. What is
P(X+Y =2)?

Perhaps 0.257 But notif Y =1 — X.

Random variables are neither random nor variable.
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Previous Work

@ Giry (1981), Jones and Plotkin (1989)
Probability distributions are a monad.

o Kozen (1981)
Formalized semantics.
@ Ramsey and Pfeffer (2002)
Efficient expectations, but discrete distributions only.
@ Park, Pfenning, and Thrun (2004)
Continuous distributions also, but support only sampling.

@ Erwig and Kollmansberger (2006)
Provide Haskell library, but discrete distributions only, computational
efficiency not optimized.
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Previous Work

@ Giry (1981), Jones and Plotkin (1989)
Probability distributions are a monad.

o Kozen (1981)
Formalized semantics.

@ Ramsey and Pfeffer (2002)
Efficient expectations, but discrete distributions only.

@ Park, Pfenning, and Thrun (2004)
Continuous distributions also, but support only sampling.

@ Erwig and Kollmansberger (2006)
Provide Haskell library, but discrete distributions only, computational
efficiency not optimized.

Our goal: Unify these results in a single system.
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Syntax: Probability Language
Bhat, Agarwal, Gray, Vuduc (2010)

T :=Bool | Int |Real| T3 X Tp |Prob T
E ::= x| true | false
I r|E+ B | E x E
| (E1,E2) | fst E | snd E
| if £y then Ey else B3| By =E | E1 < B

| uniform | return E | let x ~ E; in E
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Gaussian Model

0.00 0.02 0.04 0.06 0.08 0.10
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Mixture of Gaussians Model
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Trying alternative statistical models
Formulation:

Xi ~ Normal(6,1)
0 =arg max f(x]6)
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Trying alternative statistical models
Formulation:

Xi ~ Normal(6,1)
0 =arg max f(x]6)

Solution:

|
9;§
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Trying alternative statistical models

Formulation: Formulation:

Z; ~ Bernoulli(0.5)

Xi ~ Normal(6,1) Xi ~ Normal((1 — Z;)0o + Zi01,1)
é:argmgaxf(xw) é:argmgaxf(x\ﬂ)
Solution:
-2y
n :
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Trying alternative statistical models

Formulation:

Xi ~ Normal(6,1)
0 =arg max f(x]6)

Solution:

:Ii—‘

-1
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Formulation:

Z; ~ Bernoulli(0.5)

Xi ~ Normal((l — Z,')HO + Z;i01, 1)
0= argm@axf(x | 6)

Solution:
(907 él) =

while (.

for i

rand () ;
L)

1 to n do
i

o :=

B(xi3 01,1) 7 (B(x;: 00,1) +H(x;: 61,1))
= ST W=y xxi />0 (=)

0p := Z, 1 Vi¥Xi / Z, 1 Vi
return (0, 01);
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Interactive algorithm assistant

File Edit View Terminal Help

Features p nb]éctl\;e Cant version 3.11.1 i
load ian;;
@ enter problems iyt e
argmax{mu : R, ss : R}{
df
o apply SChemaS Tlet pick = normal mu ss in

var x1 ~ pick in var x2 ~ pick in var x3 ~ pick in return (x1, x2, x3))
(9, 28, 11)

| 8 <= ss}

ap ( let simpl <& pdf simpl );;

: Om.Syntax.expr

@ undo/redo

) 1 a H
Comblnators 557-1.500000 * %e~((9 - mu)~2/ss * -9.500000 + (28 - mu)"2/ss *
-0.500000 + (11 - mu)~2/ss * -0.500000) * (2 * %pi)~-1.500000

Status gmax{mu :
-1.560800 * log Ss + (9 - mu)~2/ss * -0.500600 + (28 - mu)~2/ss *
-6.500008 + (11 - mu)~2/ss * -9.500000
@ can solve several iy
f ap descartes;;
: Om.Syntax.expr =
textbook examples o i L g 0
. . -1.500800 * log Ss + (9 - mu)*2/ss * -8.500000 + (28 - mu)*2/ss *
MLE, incl. via EM -6.560000 + (11 - mu)*2/ss * -0.508008
= -1.5600080/s5 + (9 - mu)*2 * ss*-2 * 0.500800 + (28
. 8.500000 + (11 - mu)~2 * ss*-2 * 8.508000 & 8 = 1/s5
@ autotuning + more mu) + 1/ss * (28 - mu) + 1/ss * (11 - mu)}
[# ap ( rewrite undistr <&> rewrite factors 0 <& simpl <& back solve None );;
M M - ¢ Om.Syntax.expr =
sophisticated code a7 i Y
. . -1.500800 * log ss + (9 - mu)~2/ss * -8.500000 + (28 - mu)~2/ss *
genera‘hon IS p|anned -6.560080 + (11 - mu)*2/ss * -0.508008

| mu = 16.000000 & 55 = 72.666667}
#
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Conclusions

@ Richly typed language covering:

©

linear algebra
¢ indexing

@ Boolean logic

@ optimization

@ probability and statistics

@ Library of transformations:

bigM and convex-hull methods for disjunctive constraints
Boolean propositions to pure integer constraints

several specific to probablity distributions

simple computer algebra: e.g. 0x — 0

need many more

<

¢ ¢ ¢ ¢
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Conclusions

@ Richly typed language covering:
linear algebra

indexing

Boolean logic

optimization

probability and statistics

©

9
9
9
o

@ Library of transformations:

bigM and convex-hull methods for disjunctive constraints
Boolean propositions to pure integer constraints

several specific to probablity distributions

simple computer algebra: e.g. 0x — 0

need many more

<

¢ ¢ ¢ ¢

@ Next step: autotuning!
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