
Formal Mathematical Languages

Ashish Agarwal

Yale University

CScADS Summer Workshop
Libraries and Autotuning for Petascale Applications

Snowbird, Utah
August 11, 2010

Ashish Agarwal () 1 / 27

Motivation

Bring more of mathematics to more scientists and engineers

New Language: Express mathematical problems elegantly and formally

Syntactic Transformations: Mechanically generate algorithms

Ashish Agarwal () 2 / 27

Linear programs (LP)

Ashish Agarwal () 3 / 27

x1 ≥ 1.0
x2 ≥ 1.0
x1 + x2 ≤ 5.0

x1

x2

1 2 3 40

1

2

3

4

0

Linear programs (LP)

Ashish Agarwal () 3 / 27

max x1 − x2

x1 ≥ 1.0
x2 ≥ 1.0
x1 + x2 ≤ 5.0

x1

x2

1 2 3 40

1

2

3

4

0

Linear programs (LP)

Ashish Agarwal () 3 / 27

Cannot represent multiple polyhedra.

max x1 − x2

x1 ≥ 1.0
x2 ≥ 1.0
x1 + x2 ≤ 5.0

x1

x2

1 2 3 40

1

2

3

4

0

Declaring discrete choice – with disjunction

Ashish Agarwal () 4 / 27

x1 ≥ 1
x2 ≥ 1

x1 + x2 ≤ 5

︸ ︷︷ ︸

R1

[
5 ≤ x1 ≤ 8
4 ≤ x2 ≤ 7

]

︸ ︷︷ ︸

R2

x1

x2

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

0

R1

R2

Declaring discrete choice – with disjunction

Ashish Agarwal () 4 / 27

Language of DP extends LP with disjunction

x1 ≥ 1
x2 ≥ 1

x1 + x2 ≤ 5

︸ ︷︷ ︸

R1

∨

[
5 ≤ x1 ≤ 8
4 ≤ x2 ≤ 7

]

︸ ︷︷ ︸

R2

x1

x2

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

0

R1

R2

Declaring discrete choice – with disjunction

Ashish Agarwal () 4 / 27

Language of DP extends LP with disjunction

Few algorithms for solving DPs directly.

x1 ≥ 1
x2 ≥ 1

x1 + x2 ≤ 5

︸ ︷︷ ︸

R1

∨

[
5 ≤ x1 ≤ 8
4 ≤ x2 ≤ 7

]

︸ ︷︷ ︸

R2

x1

x2

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

0

R1

R2

Declaring discrete choice – with integers
Mixed-integer linear programs (MILP)

Basic idea: multiply terms by y ∈ {0, 1}

0 ≤ y ≤ 1
x ≤ 3.0y + 2.0(1 − y)

if y = 1, then x ≤ 3.0

if y = 0, then x ≤ 2.0

Ashish Agarwal () 5 / 27

Declaring discrete choice – with integers
Mixed-integer linear programs (MILP)

Basic idea: multiply terms by y ∈ {0, 1}

0 ≤ y ≤ 1
x ≤ 3.0y + 2.0(1 − y)

if y = 1, then x ≤ 3.0

if y = 0, then x ≤ 2.0

Language of MILP extends LP with the integer type

Ashish Agarwal () 5 / 27

Declaring discrete choice – with integers
Mixed-integer linear programs (MILP)

Basic idea: multiply terms by y ∈ {0, 1}

0 ≤ y ≤ 1
x ≤ 3.0y + 2.0(1 − y)

if y = 1, then x ≤ 3.0

if y = 0, then x ≤ 2.0

Language of MILP extends LP with the integer type

Ashish Agarwal () 5 / 27

Goal:
Express as DP

(intuitive)
−→

Convert to MILP
(accepted by solvers)

Example: single disjunctive constraint
Agarwal, Bhat, Gray, Grossman (PADL 2010)

Input

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

(x <= w) \/ (x >= w + 4.0)

Output

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

exists y1:[0, 1]

exists y2:[0, 1]

exists x1:<0.0, 100.0>

exists x2:<0.0, 100.0>

exists w1:<0.0, 50.0>

exists w2:<0.0, 50.0>

w = w1 + w2,

x = x1 + x2,

y1 + y2 = 1,

10.0 * y1 <= x1,

x1 <= 100.0 * y1,

2.0 * y1 <= w1,

w1 <= 50.0 * y1,

x1 <= w1,

10.0 * y2 <= x2,

x2 <= 100.0 * y2,

2.0 * y2 <= w2,

w2 <= 50.0 * y2,

x2 >= w2 + 4.0 * y2

Ashish Agarwal () 6 / 27

Example: single disjunctive constraint
Agarwal, Bhat, Gray, Grossman (PADL 2010)

Input

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

(x <= w) \/ (x >= w + 4.0)

Output generated in MPS
and AMPL formats

Implemented as a DSL
embedded in OCaml

Output

var x:<10.0, 100.0>

var w:<2.0, 50.0>

min x + w subject_to

exists y1:[0, 1]

exists y2:[0, 1]

exists x1:<0.0, 100.0>

exists x2:<0.0, 100.0>

exists w1:<0.0, 50.0>

exists w2:<0.0, 50.0>

w = w1 + w2,

x = x1 + x2,

y1 + y2 = 1,

10.0 * y1 <= x1,

x1 <= 100.0 * y1,

2.0 * y1 <= w1,

w1 <= 50.0 * y1,

x1 <= w1,

10.0 * y2 <= x2,

x2 <= 100.0 * y2,

2.0 * y2 <= w2,

w2 <= 50.0 * y2,

x2 >= w2 + 4.0 * y2

Ashish Agarwal () 6 / 27

Switched flow process, comparison to ILOG Concert

Method #vars (#binary) #constr. (#IC) time (sec)

flow-Concert 1061 (874) 1080 (718) 36.85
flow-IC 477 (291) 1001 (438) 11.60
flow-BM 477 (291) 1198 3.37
flow-CH 1194 (631) 2747 1.09

All 3 of our methods improve on state-of-the-art.

Ashish Agarwal () 7 / 27

Strip packing, comparison to expert

Method #vars (#binary) #constr. (#IC) time (sec)
pack12-IC 289 (264) 342 (264) 1.83
pack12-BM 289 (264) 342 1.22
pack12-CH 1345 (264) 2718 168.38
pack12-BM-expert 289 (264) 342 1.82
pack12-CH-expert 1345 (264) 1662 149.57

pack21-IC 883 (840) 1071 (840) 24.44
pack21-BM 883 (840) 1071 55.01
pack21-CH 4243 (840) 8631 991.68
pack21-BM-expert 883 (840) 1071 29.56
pack21-CH-expert 4243 (840) 5271 > 3600.00

Our mechanizations perform just as well as expert encodings.

Ashish Agarwal () 8 / 27

Indexing
Agarwal (2006)

We solved a problem with 150,000 equations and 25,000 variables.

How do you declare so many equations and variables?

Ashish Agarwal () 9 / 27

Indexing
Agarwal (2006)

We solved a problem with 150,000 equations and 25,000 variables.

How do you declare so many equations and variables?
Use index sets.

Ashish Agarwal () 9 / 27

Indexing
Agarwal (2006)

We solved a problem with 150,000 equations and 25,000 variables.

How do you declare so many equations and variables?
Use index sets.

Indexed operators:
n∑

i=1

xi

Families of equations:

∀i ∈ {1, . . . , n} xi+1 = xi + yi

Ashish Agarwal () 9 / 27

Indexing
Agarwal (2006)

We solved a problem with 150,000 equations and 25,000 variables.

How do you declare so many equations and variables?
Use index sets.

Indexed operators:
n∑

i=1

xi

Families of equations:

∀i ∈ {1, . . . , n} xi+1 = xi + yi

Complex index sets in practice, e.g. job shop scheduling:

∀j ∈ J ∀s ∈ Sj ∀j ′ ∈ Prej ,s tj ′,s ≤ tj ,s

Ashish Agarwal () 9 / 27

Indexing Is A Generalization of Matrix Notation

Rows R = {1, . . . ,M}

Columns S = {1, . . . ,N}

Matrix A : R × S → R

Ashish Agarwal () 10 / 27

Indexing Is A Generalization of Matrix Notation

Rows R = {1, . . . ,M}

Columns S = {1, . . . ,N}

Matrix A : R × S → R

Matrix multiplication:

Consider vector x : S → R

Then matrix multiplication is a higher-order function

⊗ : (R × S → R) × (S → R) → (R → R)

Ashish Agarwal () 10 / 27

Beyond Matrices

set JOBS = {a,b,c}

set STAGES(i) = case i of

a => {s1,s2}

| b => {s1,s3,s4}

| c => {s3,s4}

set JOBS_STAGES = i:JOBS * STAGES[i]

Explicitly:

{(a,s1), (a,s2),

(b,s1), (b,s3), (b,s4),

(c,s3), (c,s4)}

Ashish Agarwal () 11 / 27

Beyond Matrices

Can now define non-rectangular data:

A : i:JOBS * STAGES[i] -> real

A =

Aa,s1 Aa,s2

Ab,s1 Ab,s3 Ab,s4

Ac,s3 Ac,s4

Ashish Agarwal () 12 / 27

Beyond Matrices

Can now define non-rectangular data:

A : i:JOBS * STAGES[i] -> real

A =

Aa,s1 Aa,s2

Ab,s1 Ab,s3 Ab,s4

Ac,s3 Ac,s4

Also support:

Tensors

Nested matrices

Can have matrices with some elements as sub-matrices, and some as
scalars or matrices of different dimensions

Ashish Agarwal () 12 / 27

Beyond Matrices

Can now define non-rectangular data:

A : i:JOBS * STAGES[i] -> real

A =

Aa,s1 Aa,s2

Ab,s1 Ab,s3 Ab,s4

Ac,s3 Ac,s4

Also support:

Tensors

Nested matrices

Can have matrices with some elements as sub-matrices, and some as
scalars or matrices of different dimensions

Ashish Agarwal () 12 / 27

Types express exact nature of each value.

Memory Reduction

Load this program:

∀i ∈ {1, . . . , n} xi+1 = xi + yi

Optimization software (AMPL, CPLEX, etc) expand this to:

x2 = x1 + y1

x3 = x2 + y2

x4 = x3 + y3

x5 = x4 + y4

...
...

...

Ashish Agarwal () 13 / 27

Memory Reduction

Load this program:

∀i ∈ {1, . . . , n} xi+1 = xi + yi

Optimization software (AMPL, CPLEX, etc) expand this to:

x2 = x1 + y1

x3 = x2 + y2

x4 = x3 + y3

x5 = x4 + y4

...
...

...

We retain indexing structure:
Memory requirements reduced from O(n) to O(1).

Ashish Agarwal () 13 / 27

Computational Improvements

Input to our software:

∨

i :[1..10]

w ≥ xi + 4.0

Our software’s output:

∧

i :[1..10]

10.0 ∗ yi ≤ w ′

i

w ′

i ≤ 90.0 ∗ yi

∧

d:[1..10]

[
5.0 ∗ yi ≤ x ′

i ,d

x ′

i ,d ≤ 75.0 ∗ yi

]

w ′

i ≥ x ′

i ,i + 4.0 ∗ yi

Ashish Agarwal () 14 / 27

Computational Improvements

Input to our software:

∨

i :[1..10]

w ≥ xi + 4.0

Our software’s output:

∧

i :[1..10]

10.0 ∗ yi ≤ w ′

i

w ′

i ≤ 90.0 ∗ yi

∧

d:[1..10]

[
5.0 ∗ yi ≤ x ′

i ,d

x ′

i ,d ≤ 75.0 ∗ yi

]

w ′

i ≥ x ′

i ,i + 4.0 ∗ yi

Ashish Agarwal () 14 / 27

Reformulation time reduced from O(n) to O(1).

“Loop” Optimization (Easy)

∀i ∈ {1, . . . , 5} ∀j ∈
{1, . . . , 10} xi ,j = yi−1,j

for i = 1 to 5 do

for j = 1 to 10 do

x[i, j] = y[i-1, j]

done

done

∀j ∈ {1, . . . , 10} ∀i ∈
{1, . . . , 5} xi ,j = yi−1,j

for j = 1 to 10 do

for i = 1 to 5 do

x[i, j] = y[i-1, j]

done

done

Ashish Agarwal () 15 / 27

“Loop” Optimization (Easy)

∀i ∈ {1, . . . , 5} ∀j ∈
{1, . . . , 10} xi ,j = yi−1,j

for i = 1 to 5 do

for j = 1 to 10 do

x[i, j] = y[i-1, j]

done

done

∀j ∈ {1, . . . , 10} ∀i ∈
{1, . . . , 5} xi ,j = yi−1,j

for j = 1 to 10 do

for i = 1 to 5 do

x[i, j] = y[i-1, j]

done

done

Ashish Agarwal () 15 / 27

Standard rules of first-order logic may apply.

“Loop” Optimization (Hard)

What if there are dependent types?

∀i ∈ {1, . . . , 5} ∀j ∈ {1, . . . , i} xi ,j = yi−1,j

for i = 1 to 5 do

for j = 1 to i do

x[i, j] = y[i-1, j]

done

done

Ashish Agarwal () 16 / 27

Conjunctive Normal Form with Dependent Types

Indexed DNF expression
∨

i∈σ

∧

i ′∈σ′

e

can be converted to indexed CNF

∧

f ∈(i :σ→σ′)

∨

i∈σ

{
f (i) /i ′

}
e

by introducing index over function space.

Other solutions, e.g. introducing slack variables, also possible.

Ashish Agarwal () 17 / 27

What Are Random Variables?

Wasserman (2004) says:

A random variable is a mapping
X : Ω → R

that assigns a real number X (ω) to each outcome ω.

Ashish Agarwal () 18 / 27

What Are Random Variables?

Wasserman (2004) says:

A random variable is a mapping
X : Ω → R

that assigns a real number X (ω) to each outcome ω.

However:

Treated as real: P(X ≥ 5)

Not random:
We write

X ∼ Bernoulli(p)

to mean that X is exactly distributed as

f (x) = px(1 − p)1−x for x ∈ {0, 1}

Ashish Agarwal () 18 / 27

What Are Random Variables?

Not variables:

Cannot substitute occurrences of X for anything.
e.g. In P(X ≥ 5), cannot replace X with anything that preserves
meaning of the statement.

Dependence matters.
e.g. Two random variables X and Y , both distributed as
Bernoulli(0.5), each 0 or 1 with probability 0.5. What is
P(X + Y = 2)?

Perhaps 0.25? But not if Y = 1 − X .

Ashish Agarwal () 19 / 27

What Are Random Variables?

Not variables:

Cannot substitute occurrences of X for anything.
e.g. In P(X ≥ 5), cannot replace X with anything that preserves
meaning of the statement.

Dependence matters.
e.g. Two random variables X and Y , both distributed as
Bernoulli(0.5), each 0 or 1 with probability 0.5. What is
P(X + Y = 2)?

Perhaps 0.25? But not if Y = 1 − X .

Ashish Agarwal () 19 / 27

Random variables are neither random nor variable.

Previous Work

Giry (1981), Jones and Plotkin (1989)
Probability distributions are a monad.

Kozen (1981)
Formalized semantics.

Ramsey and Pfeffer (2002)
Efficient expectations, but discrete distributions only.

Park, Pfenning, and Thrun (2004)
Continuous distributions also, but support only sampling.

Erwig and Kollmansberger (2006)
Provide Haskell library, but discrete distributions only, computational
efficiency not optimized.

Ashish Agarwal () 20 / 27

Previous Work

Giry (1981), Jones and Plotkin (1989)
Probability distributions are a monad.

Kozen (1981)
Formalized semantics.

Ramsey and Pfeffer (2002)
Efficient expectations, but discrete distributions only.

Park, Pfenning, and Thrun (2004)
Continuous distributions also, but support only sampling.

Erwig and Kollmansberger (2006)
Provide Haskell library, but discrete distributions only, computational
efficiency not optimized.

Ashish Agarwal () 20 / 27

Our goal: Unify these results in a single system.

Syntax: Probability Language
Bhat, Agarwal, Gray, Vuduc (2010)

T ::= Bool | Int | Real | T1 × T2 | Prob T

E ::= x | true | false

| r | E1 + E2 | E1 × E2

| (E1,E2) | fst E | snd E

| if E1 then E2 else E3 | E1 = E2 | E1 ≤ E2

| uniform | return E | let x ∼ E1 in E2

Ashish Agarwal () 21 / 27

Gaussian Model

150 160 170 180

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Height (cm)

Ashish Agarwal () 22 / 27

Mixture of Gaussians Model

150 160 170 180

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Height (cm)

Ashish Agarwal () 23 / 27

Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)

Ashish Agarwal () 24 / 27

Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)

Solution:

θ̂ =
1

n

n∑

i=1

xi

Ashish Agarwal () 24 / 27

Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)

Solution:

θ̂ =
1

n

n∑

i=1

xi

Formulation:

Zi ∼ Bernoulli(0.5)

Xi ∼ Normal((1 − Zi)θ0 + Ziθ1, 1)

θ̂ = arg max
θ

f (x | θ)

Ashish Agarwal () 24 / 27

Trying alternative statistical models

Formulation:

Xi ∼ Normal(θ, 1)

θ̂ = arg max
θ

f (x | θ)

Solution:

θ̂ =
1

n

n∑

i=1

xi

Formulation:

Zi ∼ Bernoulli(0.5)

Xi ∼ Normal((1 − Zi)θ0 + Ziθ1, 1)

θ̂ = arg max
θ

f (x | θ)

Solution:

(θ̂0, θ̂1) := rand ();

while (...)

for i = 1 to n do

γi := φ(xi ; θ̂1,1)/(φ(xi ; θ̂0,1)+φ(xi ; θ̂1,1));

θ̂0 :=
Pn

i=1(1-γi)*xi /
Pn

i=1(1-γi);

θ̂1 :=
Pn

i=1 γi *xi /
Pn

i=1 γi ;

return (θ̂0, θ̂1);

Ashish Agarwal () 24 / 27

Interactive algorithm assistant

Features

enter problems

apply schemas

undo/redo

combinators

Status

can solve several
textbook examples of
MLE, incl. via EM

autotuning + more
sophisticated code
generation is planned

Ashish Agarwal () 25 / 27

Conclusions

Richly typed language covering:

linear algebra
indexing
Boolean logic
optimization
probability and statistics

Library of transformations:

bigM and convex-hull methods for disjunctive constraints
Boolean propositions to pure integer constraints
several specific to probablity distributions
simple computer algebra: e.g. 0x 7→ 0
need many more

Ashish Agarwal () 26 / 27

Conclusions

Richly typed language covering:

linear algebra
indexing
Boolean logic
optimization
probability and statistics

Library of transformations:

bigM and convex-hull methods for disjunctive constraints
Boolean propositions to pure integer constraints
several specific to probablity distributions
simple computer algebra: e.g. 0x 7→ 0
need many more

Next step: autotuning!

Ashish Agarwal () 26 / 27

Acknowledgments

Optimization:

Ignacio Grossmann (Carnegie Mellon)
Nick Sawaya and Vikas Goel (Exxon Mobil)

Indexing:

Bob Harper (Carnegie Mellon)

Statistics:

Sooraj Bhat and Alex Gray (GeorgiaTech)

Linear algebra, HPC, Autotuning:

Rich Vuduc (GeorgiaTech)

Ashish Agarwal () 27 / 27

