
PREPRINT – DO NOT DISTRIBUTE

A Type Theory for Probability Density Functions

Sooraj Bhat
Georgia Institute of Technology

sooraj@gatech.edu

Ashish Agarwal
New York University

ashish.agarwal@nyu.edu

Richard Vuduc, Alexander Gray
Georgia Institute of Technology
{richie,agray}@cc.gatech.edu

Abstract
There has been great interest in creating probabilistic programming
languages to simplify the coding of statistical tasks; however, there
still does not exist a formal language that simultaneously provides
(1) continuous probability distributions, (2) the ability to naturally
express custom probabilistic models, and (3) probability density
functions (PDFs). This collection of features is necessary for mech-
anizing fundamental statistical techniques. We formalize the first
probabilistic language that exhibits these features, and it serves as
a foundational framework for extending the ideas to more general
languages. Particularly novel are our type system forabsolutely
continuous(AC) distributions (those which permitPDFs) and our
PDF calculation procedure, which calculatesPDFs for a large class
of AC distributions. Our formalization paves the way toward the
rigorous encoding of powerful statistical reformulations.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages–Program
analysis; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs–Mechanical verifi-
cation; G.3 [Probability and Statistics]: Statistical computing

General Terms Theory, Languages

Keywords Continuous Probability, Probability Density Functions

1. Introduction
In the face of more complex data analysis needs, both the ma-
chine learning and programming languages communities have rec-
ognized the need to express probabilistic and statistical computa-
tions declaratively. This has led to a proliferation of probabilistic
programming languages [7, 9, 12–14, 16, 18–22]. Program trans-
formations on probabilistic programs are crucial: many techniques
for converting statistical problems into efficient, executable algo-
rithms are syntactic in nature. A rigorous language definition aids
reasoning about the correctness of these program transformations.

However, several fundamental statistical techniques cannot cur-
rently be encoded as program transformations because current lan-
guages have weak support for probability distributions on contin-
uous or hybrid discrete-continuous spaces. In particular, no exist-
ing language rigorously supports expressing theprobability density
function (PDF) of custom probability distributions. This is an im-
pediment to mechanizing statistics; continuous distributions and

[Copyright notice will appear here once ’preprint’ option is removed.]

their PDFs are ubiquitous in statistical theory and applications.
Techniques such as maximum likelihood estimation (MLE),L2 esti-
mation (L2E), and nonparametric kernel methods are all formulated
in terms of thePDF [3, 23, 24]. Specifically, we want the ability to
naturally express a probabilistic model over a discrete, continuous
or hybrid space and then mechanically obtain a usable form of its
PDF. Usage of thePDFmay entail direct numerical evaluation of the
PDF or symbolic manipulation of thePDF and its derivatives. Con-
tinuous spaces pose some unique obstacles, however. First, the exis-
tence of thePDF is not guaranteed, unlike the discrete case. Second,
stating the conditions for existence involves the language of mea-
sure theory, an area of mathematics renowned for nonconstructive
results, suggesting that mechanization may not be straightforward.
Notably, obtaining aPDF from its distribution is a non-computable
operation in the general case [11]. In light of these issues, we make
the following new contributions:

• We present a formal probability language with classical measure-
theoretic semantics which allows naturally expressing a variety
of useful probability distributions on discrete, continuous and
hybrid discrete-continuous spaces, as well as theirPDFs when
they exist (Section 3). The language is a core calculus which
omits functions and mutation.

• We define a type system forabsolutely continuousprobabil-
ity distributions,i.e. those which permit aPDF. The type sys-
tem does not require mechanizingσ-algebras, null sets, the
Lebesgue measure, or other complex constructions from mea-
sure theory. The key insight is to analyze a distribution by how it
transforms other distributions instead of using the “obvious” in-
duction on the monadic structure of the distribution (Section 4).

• We define a procedure that calculatesPDFs for a large class
of distributions accepted by our type system. The design per-
mits modularly adding knowledge about individual distribu-
tions with knownPDFs (but which cannot be calculated from
scratch), enabling the procedure to proceed with programs that
use these distributions as subcomponents (Section 5).

We believe this is the first general treatment ofPDFs in a language.
We deliberately omit features that are not essential to the current
investigation (e.g.expectation, sampling). Finally, we discuss the
relation to existing and future work (Sections 6 and 7). In particu-
lar, we save a treatment ofPDFs in the context of conditional prob-
ability for future work.

2. Background and motivation
We first introduce probability in the context of countable spaces to
emphasize the complications that arise when moving to continuous
spaces. We focus only on issues surroundingPDFs. We occasionally
deviate from standard probability notation to circumvent impreci-
sion in the standard notation and to create a harmonious notation
throughout the paper. In this section we present a specialized ac-

PREPRINT – DO NOT DISTRIBUTE 1 2011/11/10

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1. TheCDF andPDF of a standard normal distribution and theCDF of a distribution that does not have aPDF.

count of probability for ease of exposition. We discuss the rigorous
and generalized definitions in Section 3.3.

We use the termdiscrete distributionfor distributions on dis-
crete spaces (countable sets);continuous distributionfor distribu-
tions on the continuous spacesR andRn; andhybrid distribution
for distributions on products of discrete and continuous spaces that
are themselves neither discrete nor continuous, such asR× Z.

2.1 Probability on countable spaces

Consider a set of outcomesA. For now, letA be countable. It is
meant to represent the possible states of the world we are modeling,
such as the set of possible outcomes of an experiment or measure-
ments of a quantity. Aneventis a subset ofA, also understood as a
predicate on elements ofA. Events denote some occurrence of in-
terest and partition the outcomes into those that exhibit the property
and those that do not. Aprobability distributionP (or simply,distri-
bution) onA is a function from events to[0, 1] such thatP(X) ≥ 0
for all eventsX, P(A) = 1 andP(

⋃∞
i=0 Xi) =

∑∞
i=0 P(Xi) for

countable sequences of mutually disjoint eventsXi. Distributions
tell us the probability that different events will occur. It is gener-
ally more convenient to work with a distribution’sprobability mass
function(PMF) instead, definedf(x) = P({x}), which tells us how
likely an individual outcome is. It satisfies

P(X) =
∑

x∈X

f(x)

for all eventsX on A. For example, ifP is the distribution char-
acterizing the outcome of rolling a fair die, itsPMF is given by
f(x) = 1

6
, wherex ∈ A andA = {1, 2, 3, 4, 5, 6}. The probabil-

ity an even number is rolled isP({2, 4, 6}) = 1
6
+ 1

6
+ 1

6
= 1

2
.

2.2 Moving to continuous spaces

A probability density function(PDF) is the continuous analog of the
PMF. Unfortunately, although every distribution on a countable set
has aPMF, not every distribution on a continuous space has aPDF.
Consider distributions on the real line. We say that a functionf is
a PDF of a distributionP onR if for all eventsX,

P(X) =

∫

X

f(x) dx, (1)

which states that the probability ofX is the integral off onX (in
the simplest case,X is an interval). This idea can be extended to
more general spaces. This equation does not determinef uniquely,
but any two solutionsf1 andf2 are equal “almost everywhere” (see
Section 3.3) and give identical results under integration. Thus, we
often refer to aPDF asthePDF.

For the spaces we consider in this paper, the property of having
a PDF is equivalent to beingabsolutely continuous(AC). Roughly
speaking, a distribution isAC if it never assigns positive probabil-
ity to events that have “size zero” in the underlying space. For in-
stance, the standard normal distribution is absolutely continuous

and has thePDF φ(x) = exp(−x2/2)/
√
2π. On the other hand,

the distribution ofy in the model

z ∼ CoinFlip(1/2)
x ∼ Normal(0, 1) y =

{

0 if z = heads
x if z = tails.

does not have aPDF. We have usedrandom variablesto write the
model; this is a commonly used informal notation that is shorthand
for a more rigorous expression that defines the model. The model
represents the following process: flip a fair coin; return 0 if it is
heads, and sample from the standard normal distribution otherwise.
We can see that it is notAC: the event{0} occurs with probability
1/2 (whenever the coin comes up heads), but has an interval length
of zero. We use thecumulative distribution function(CDF) to vi-
sualize each distribution (Figure 1); theCDF F of a distributionP
on R is F (x) = P((−∞, x]) and gives the probability that a
sample from the distribution takes a value less than or equal tox.
From Equation 1 we know thatP has aPDF if and only if there ex-
ists a functionf such thatF (x) =

∫ x

−∞ f(t) dt. Clearly, no such
function exists for theCDF of y due to the jump discontinuity.

Mixing discrete and continuous types is not the only culprit.
Consider the following process: sample a numberu uniformly
randomly from[0, 1] and return the vectorx = (u, u) ∈ R2.
The distribution ofx (a distribution onR2) is not AC: the event
X = {(u, u) | u ∈ [0, 1]} has probability 1, butX is a line
segment and thus has zero area. Likewise, there is noPDFonR2 we
could integrate to give positive mass on this zero area line segment.

2.3 Applications of thePDF

The PDF is often used to compute expectations (and probabilities,
which are a special case of expectation). Expectation is a funda-
mental operation in probability and is used in defining quantities
such as mean and variance. The expectation operationE of a distri-
butionP onR is a higher-order function that satisfies

E(g) =

∫ ∞

−∞
g(x) · f(x) dx

whenP has aPDF, f , and the integral exists. Another application is
maximum likelihood estimation(MLE), which addresses the prob-
lem of choosing the member of a family of distributions that “best
explains” observed data. LetP(· ; ·) be a parameterized family of
distributions, whereP(· ; θ) is the distribution for a given parame-
terθ. TheMLE estimateθ∗ of P for observed datax is given by

θ∗ = argmax
θ

f(x; θ)

where f(· ; θ) is the PDF of P(· ; θ). For example,x could be
a set of points inRn we wish to cluster, andθ∗ could be the
estimate of the locations of the cluster centroids.P would be the
family of distributions we believe generated the clusters (a family
parameterized by the positions of the cluster centroids), such as a
mixture-of-Gaussians model. More details are available in [3].

PREPRINT – DO NOT DISTRIBUTE 2 2011/11/10

2.4 Challenges for language design

Categorically, probability distributions form a monad [8, 20]. This
structure forms the basis of many probabilistic languages because
it is minimal, elegant, and presents many attractive features. First, it
provides the look and feel of informal random variable notation, al-
lowing us to express models as we normally would, while remain-
ing mathematically rigorous. The monad structure affords formu-
lating probability as an embedded domain specific language [7, 13,
18, 20] or as a mathematical theory in a proof assistant [2]. Addi-
tionally, many proofs about distributions expressed in the probabil-
ity monad are greatly simplified by the monadic structure. We feel
it is desirable to structure a language around the probability monad,
and we investigate supportingPDFs specifically in such languages.

The probability monad consists of monadic return and monadic
bind, as usual. Monadic return corresponds to the point mass distri-
bution. We also provide the Uniform(0,1) distribution as a monadic
value. These three combinators can be used to express a variety of
distributions. The main issue when designing a type system for ab-
solute continuity is that return creates non-AC distributions (on con-
tinuous types), yet—as a core member of the monadic calculus—it
appears in the specification of nearly every distribution, even those
thatare AC. The “obvious” induction along the monadic structure
is difficult to use to prove absolute continuity in the cases of inter-
est. Consider for instance the joint distribution of two independent
Uniform(0,1) random variables, written in our language as

var x ∼ random in var y ∼ random in return (x, y). (2)

It is AC even though the subexpressionsreturn (x, y) andvar y ∼
random in return (x, y) are bothnot AC, where we treatx andy
as real numbers, as dictated by the typing rule for bind. Also, as
implementors we have found it difficult to “eyeball” the rules for
absolute continuity. For example, only the first of these distribu-
tions isAC even though they are all nearly identical to Equation 2:

var x ∼ random in var y ∼ random in return (x, x+ y)

var x ∼ random in var y ∼ random in return (x, y − y)

var x ∼ random in var y ∼ random in return (x, y, x+ y)

Clearly, what is needed is a principled analysis. We provide this in
Section 4. A natural urge is wanting to removereturn to create
a language in which onlyAC distributions are expressible. We
feel this is undesirable. Withoutreturn, we would not be able
to express something as simple as adding two random variables
(consider(x + y) instead of(x, y) in Equation 2). Essentially,
return allows us to express random variables as transformations
of other random variables—a fundamental modeling tool we feel
should be supported, allowing users to write down models that most
naturally capture their domain. Withoutreturn we must extend the
core calculus for each transformation we wish to use on random
variables, and we must do so carefully if we want to ensure that
non-AC distributions remain inexpressible. This extension of the
core detracts from minimality and elegance, and it complicates
developing the theory in a verification environment such asCOQ,
one of our eventual goals.

Finally, in addition to checking for existence, we would like to
also calculate a usable form for thePDF. Many current probabilis-
tic languages focus on distributions with onlyfinitely many alter-
natives, which allows for implementing distributions as weighted
lists of outcomes. The probability monad in this case is similar to
the list monad, with some added logic describing how bind should
propagate the weights. The weighted lists correspond directly to the
PMF, but no such straightforward computational strategy exists for
thePDF. We explore this further in Section 5.

Variables x, y, z, u, v Literals l

Base types τ ::= bool | Z | R | τ1 × τ2

Types t ::= τ | dist τ
Expressions ε ::= x | l | op ε1...εn | if ε1 then ε2 else ε3

Primops op ::= + | ∗ | neg | inv | = | < | (·, ·) | fst | snd
| exp | log | sin | cos | tan | R of Z

Distributions e ::= random | return ε | var x ∼ e1 in e2

Programs p ::= pdf e

Contexts Γ ::= ∅ | Γ, x : τ Υ ::= ∅ | Υ, x : τ ∼ e

Substitution e[x := ε] Free variables FV (·)

Figure 2. The abstract syntax.

3. The language
In this section we present the abstract syntax, type system and
semantics for our probabilistic language, except for the parts related
to PDFs, which we cover in Section 4.

3.1 Abstract syntax

Figure 2 contains the syntax definitions. In addition to the stan-
dard letters for variables, we also useu andv when we want to
emphasize that a random variable is distributed according to the
Uniform(0,1) distribution. The syntactic category for literals in-
cludes Boolean (bool), integer (Z), and real number (R) literals.
Types are stratified to ensure that distributions (dist τ) are only
over base types. Integers are a distinct type from the reals; there
is no subtyping in the language. We also stratify terms to simplify
analysis. Expressions and primitive operations (primops) take their
standard mathematical meaning, unless noted otherwise. For sim-
plicity, we overload addition, multiplication, negation, and integer
literals on the integers and reals, but fundamentally there is a+
for integers and a separate+ for reals,etc. Inversioninv denotes
the reciprocal operation, andlog is the natural logarithm. We give
our semantics in terms of classical mathematics, so we do not con-
cern ourselves with the issue of computation on the reals. Equality
is defined on all base types in the usual way, and less-than is de-
fined only on the numeric types. We write(ε1, ε2, ..., εn−1, εn)
as shorthand for(ε1, (ε2, ...(εn−1, εn)...)). The functionR of Z
injects an integer into the reals. The distributionrandom corre-
sponds to the Uniform(0,1) distribution. The next two constructs
correspond to monadic return and bind for the probability monad.
The distributionreturn ε is thepoint mass distribution, which as-
signs probability 1 to the event{ε}. A random variable distributed
according toreturn ε is in fact deterministic: there is no variation
in the value it can take. The bind construct,var x ∼ e1 in e2,
is used to build complex distributions from simpler ones. It can
be read: “introduce random variablex, distributed according to
the distributione1, with scope in the distributione2”. It is the
only binding construct in the language. For simplicity, we have
chosen to omit let-bindings and functions from our language, but
we use both in our examples. We can use standard substitution
rules to reduce such examples to the syntax of Figure 2. Exam-
ples include〈ε〉 := if ε then 1 else 0 (to inject Booleans into
the reals),ε1 − ε2 := ε1 + neg ε2, ε1/ε2 := ε1 ∗ inv ε2, and
ε1 < ε2 < ε3 := if ε1 < ε2 then ε2 < ε3 else false. Finally,
free variables, capture-avoiding substitution, and typing contexts
(Γ) are defined in the usual way. The probability contextΥ is used
to additionally keep track of the distributions that random variables

PREPRINT – DO NOT DISTRIBUTE 3 2011/11/10

are bound to. When we useΥ in placesΓ is expected, the under-
standing is that the extra information carried byΥ is ignored.

3.2 Examples of expressible distributions

With just random, return, and bind, we can already construct a
wide variety of distributions we might care to use in practice.
Though we do not have a formal proof of this expressivity, existing
work on sampling suggests that this is the case. Non-uniform ran-
dom variate generation is concerned with generating samples from
arbitrary distributions using only samples from Uniform(0,1) [6].
We can see the connection with our language if we view the con-
structs by a sampling analogy, which emphasizes understanding a
distribution by its generating process: the phrasevar x ∼ e1 in e2
samples a valuex from the sampling functione1, which is used
to create a new sampling functione2; random samples from the
Uniform(0,1) distribution;return ε always returnsε as its sample.
For instance, thestandard normal distributioncan be defined in our
language using the Box-Muller sampling method:

std normal :=
var u ∼ random in var v ∼ random in
return (sqrt(−2 ∗ log u) ∗ cos(2 ∗ π ∗ v))

wheresqrt ε := exp ((1/2) ∗ log ε). In particular, our language is
amenable toinverse transform sampling. Likewise, we can express
other common continuous distributions:
uniform ε1 ε2 :=
var u ∼ random in
return ((ε2 − ε1) ∗ u+ ε1)

std logistic :=
var u ∼ random in
return (log (1/u− 1))

normal ε1 ε2 :=
var x ∼ std normal in
return (ε2 ∗ x+ ε1)

std exponential :=
var u ∼ random in
return (−log u)

These are the Uniform(a,b), standard logistic, standard exponential,
and Normal(µ, σ) distributions. We intentionally parameterize the
normal distribution by its standard deviation instead of its variance,
for simplicity. We define it as a transformation of a standard normal
random variable and requireε2 > 0. We can also express discrete
distributions, such as the coin flip distribution,

flip ε := var u ∼ random in return (u < ε),

which takes the valuetrue with probabilityε. This is equivalent to
the Bernoulli distribution. In fact, we can express any distribution
with finitely many outcomes:

var u ∼ random in
return (if u < 1/3 then 10 else if u < 2/3 then 20 else 30)

Admittedly, a more satisfying definition would be possible if we
had lists in the language. The reason we do not is that, although oth-
ers have addressed recursion and iteration in the context of defining
probability distributions [14], we have not yet fully reconciled re-
cursion withPDFs. The absence of recursion also means that we do
not support distributions in the style ofrejection samplingmeth-
ods, which resample values until a stopping criterion is met. Fur-
thermore, we do not elegantly supportinfinitediscrete distributions
in the core language, many of which are naturally described using
recursion. However, in Section 5 we describe how to add special
support for any distribution with a knownPDF.

We also define some higher-order concepts. The following func-
tions are used to create joint distributions and mixture models:

join e1 e2 :=
var x1 ∼ e1 in
var x2 ∼ e2 in

return (x1, x2)

mix ε e1 e2 :=
var z ∼ flip ε in
var x1 ∼ e1 in
var x2 ∼ e2 in
return (if z then x1 else x2).

The mixture model is created by flipping a coin with the specified
probability to determine which component distribution to sam-

ple from. For instance, a simple mixture-of-Gaussians is given by
mix (1/2) std normal std normal. We have defined discrete and
continuous distributions, and now we can usejoin to define non-
trivial hybrid distributions as well, such asjoin (flip (1/2)) random,
which has typedist (bool × R). Essentially,if-expressions enable
mixture models and tuples enable joint models. These two concepts
are special cases ofhierarchical models, which are models that are
defined in stages. Distributions defined using nested instances of
bind correspond to hierarchical models.

These examples are allAC, but we can also express non-AC dis-
tributions, such as the example from Section 2, writtenjumpy :=
mix (1/2) (return 0) std normal. In our language,jumpy will suc-
cessfully type check as a distribution, but the programpdf jumpy
will be rejected—as it should be—becausejumpy is not abso-
lutely continuous. The ability to represent non-AC distributions,
even though they cannot be used in programs, is in anticipation of
future language features such as expectation and sampling, which
canbe used with non-AC distributions.

3.3 Measure theory preliminaries

Measure theory is the basis of modern probability theory and uni-
fies the concepts of discrete and continuous probability distribu-
tions. It is a precise way of defining the notion of volume. We de-
velop our formalization within this framework. We give only a brief
overview of the necessary concepts; details are available in [17].

Basics Let A be a set we wish to measure. Aσ-algebraM on
A is a subset of the powersetP(A) that containsA and is closed
under complement and countable union. The pair(A,M) is a
measurable space. A subsetX of A is M-measurableif X ∈ M.
In the context of probability,A is the set of outcomes andM is
the set of events. For a functionf : A → B, the f -imageof a
subsetX of A, written f [X], denotes the set{f(x) | x ∈ A},
and thef -preimageof a subsetY of B, written f−1[Y], denotes
the set{x ∈ A | f(x) ∈ Y }. Whenf is on measurable spaces,
we sayf is (MA,MB)-measurablewhen thef -preimage of any
MB-measurable set isMA-measurable. Measurable functions are
closed under composition. We drop the prefix and saymeasurable
(for functions or sets) when it is clear what theσ-algebras are. The
σ-algebra machinery is needed to ensure a consistent theory; there
are spaces which contain pathological sets that violate intuition
about volume,e.g. the Banach-Tarski “doubling ball” paradox.
Measure theory sidesteps these issues by preferring measurable sets
and functions as much as possible. WhenA is countable, no such
problems arise, and we can always takeP(A) for M.

Measures A nonnegative functionµ : M → R+∪{∞} is amea-
sureif µ(∅) = 0, µ(X) ≥ 0 for all X in M, andµ(

⋃∞
i=1 Xi) =

∑∞
i=1 µ(Xi) for all sequences of mutually disjointXi (countable

additivity). The triple(A,M, µ) is a measure space. If addition-
ally µ(A) = 1 thenµ is a probability measure(conventionally
written P), and the triple is aprobability space. We use the terms
probability measure, probability distributionanddistributioninter-
changeably. We useC to denote the counting measure, which uses
the number of elements of a set as the set’s measure. We useL

to denote the Lebesgue measure onR, which assigns the length
|b− a| to an open interval(a, b); the sizes of other sets can be un-
derstood by complements and countable unions of intervals. The
product measureµA⊗µB of two measuresµA andµB on measur-
able spaces(A,MA) and(B,MB) is the measureµ, onA × B
and the productσ-algebraMA ⊗MB , such that

µ(X × Y) = µA(X) · µB(Y)

for X ∈ MA andY ∈ MB . The measure is unique whenµA and
µB areσ-finite. Theσ-finiteness condition is a technical condition
that is satisfied by all measures we will consider in this paper and

PREPRINT – DO NOT DISTRIBUTE 4 2011/11/10

requires that the space can be covered by a countable number of
pieces of finite measure.

Null sets A measurable setX is µ-null if µ(X) = 0; X is said
to haveµ-measure zero. The empty set is always null, the only
C-null set is the empty set, and all countable subsets ofR areL-
null. A propositional function holdsµ-almost everywhere (µ-a.e.)
if the set of elements for which the proposition does not hold is
µ-null. For instance, two functions of typeR → R are equalL-
almost everywhere if they differ at only a countable number of
points. A measure space(A,M, µ) is completeif all subsets of
anyµ-null set areM-measurable.Completionis an operation that
takes any measure space(A,M, µ) and produces an “equivalent”
complete measure space(A,M′, µ′) such thatµ′(X) = µ(X) for
X ∈ M. Null sets are ubiquitous in measure theory, so it will be
handy to work in spaces that support null sets as much as possible.
Thus, completion makes measure spaces nicer to work with. Then-
dimensional Lebesgue measureL

n is then-fold completed product
of L. For measuresµ andν on a measurable space,ν is absolutely
continuouswith respect toµ if eachµ-null set is alsoν-null.

Integration A fundamental operation involving measures is the
abstract integral, a generalization of the Riemann integral that
avoids some of its deficiencies. The abstract integral of a measur-
able functionf :A→R w.r.t. a measureµ onA is written

∫

f dµ.
The integral is always defined for nonnegativef . The integral for
arbitraryf is defined in terms of the positive and negative parts of
f and may not exist; if itdoeswe sayf is µ-integrable. We write
∫

X
f dµ as shorthand for

∫

λx � 1X(x) · f(x) dµ, which restricts
the integral to the subsetX. We write1X for the indicator function
onX. Expectationrefers to abstract integration w.r.t. a distribution.
The abstract integral satisfiesµ(X) =

∫

1X dµ for all measur-
ableX. In terms of probability, it says that the probability ofX is
the expectation of1X . Another consequence is that null sets can-
not affect integration: two functions that are equalµ-a.e. give the
same results under integration w.r.t.µ. Abstract integration w.r.t.C
andL is ordinary (possibly infinite) summation and the ordinary
Lebesgue integral, respectively. The Lebesgue integral agrees with
the Riemann integral on Riemann-integrable functions.

Measurability Ordinarily, to conclude that a distribution such as
var x ∼ e in return (f x) is well-formed, we are obligated to
verify that f is a measurable function. However, non-measurable
sets and functions are actually quite pathological and constructing
them requires the Axiom of Choice [25]. None of the constructs in
our language are as powerful as the Axiom of Choice (though we do
not have a formal proof of this), thus all constructible expressions
represent measurable functions. This discharges the obligation, and
we do not make any further mention of checking for measurability.

Stocked spaces For most applications, we often have a standard
idea of how spaces are measured. We now formalize this practice.
A spaceA is astocked spaceif it comes equipped with a complete
measure space(A,MA, µA), which is thestock measure spaceof
A. We callMA thestockσ-algebraof A andµA thestock measure
of A. The abstract integral w.r.t.µA is thestock integralof A. We
define stock measure spaces for the spacesB = {true, false}, Z, R,
and product spaces between stocked spaces as follows:

(MB, µB
) = (P(B),C)

(MZ, µZ
) = (P(Z),C)

(MR, µR
) = (theL-measurable sets,L)

(MA×B , µA×B) = completion(MA ⊗MB , µA ⊗ µB).

This definition matches what is used in practice:e.g.C becomes
the measure for countable spaces, andL

n becomes the measure for
Rn. For the rest of the paper, we assume spaces are stocked, unless

Γ ⊢ random : dist R
T-RAND

Γ ⊢ ε : τ

Γ ⊢ return ε : dist τ
T-RET

Γ ⊢ e1 : dist τ1 Γ, x : τ1 ⊢ e2 : dist τ2
Γ ⊢ var x ∼ e1 in e2 : dist τ2

T-BIND

Figure 3. Standard monadic typing rules for distributions.

explicitly noted otherwise. We say that a distribution onA is AC if
it is AC with respect toµA.

Densities A function f is a PDF of a distributionP on A if
P(X) =

∫

X
f dµA for all measurableX. Expectation can be

written using thePDF:
∫

g dP =

∫

λx � g(x) · f(x) dµA.

A joint PDF is the PDF of a joint distribution, which is simply
a distribution on a product space. We later use the fact that the
joint PDF f of a model such asx1 ∼ P1, x2 ∼ P2(· ;x1) can
be written as the product of the individual (parameterized)PDFs:
f(x1, x2) = f1(x1) · f2(x2;x1).

3.4 Type system and semantics for distributions

We now discuss the type system and semantics for syntactic cate-
gories besides programs. The type system for expressions is ordi-
nary. We assume an external mechanism for enforcing the precon-
ditions necessary to ensure totality of functions, such as an auto-
mated theorem prover or the programmer themself. For instance,
log must be applied to only positive real numbers. Distributions
obey standard monadic typing rules (Figure 3). The “random vari-
ables” introduced by bind are really just normal variables and are
typed as such; calling them random variables is a reminder about
the role they play. The typing rules ensure that random variables
are never used outside a probabilistic context.

We give our language a semantics based in classical mathemat-
ics with total functions. Base types have the usual meaning. The
denotation ofdist τ is the set of distributions possible onτ :

T [[dist τ]] = {P | (T [[τ]],Mτ ,P) is a probability space}.
We overload stock measure space notation for types; thus,Mτ and
µτ are shorthand forMT [[τ]] andµT [[τ]]. Let E [[e]]ρ be the denota-
tion of a distributione under the environmentρ, also overloaded for
expressionsε. Expressions have the semantics of their correspond-
ing forms from classical mathematics. As stated before,random is
the Uniform(0,1) distribution

E [[random]]ρ = λX � L(X ∩ [0, 1]),

which says that the probability of an eventX is its “interval size”
on [0,1]. Return is the point mass distribution

E [[return ε]]ρ = λX � 1X(E [[ε]]ρ),
which gives an eventX probability 1 as long as it includes the
outcomeε. Bind expresses the Law of Total Probability,

E [[var x ∼ e1 in e2]]ρ = λY �

∫

λx′
� f(x′)(Y) dP,

wheref(x′) = E [[e2]](ρ{x 7→ x′}) andP = E [[e1]]ρ. The family
of distributionse2 is parameterized by the variablex, in essence.
The probability of an eventY is the “average opinion” (theP-
expectation) of what each member of the family thinks is the
probability ofY . The integral exists because it is the expectation
of a bounded function.

PREPRINT – DO NOT DISTRIBUTE 5 2011/11/10

4. Type system and semantics for programs
The programpdf e is well-formed if the distributione permits a
PDF. The following theorem gives us a sufficient condition.

Theorem 4.1(Radon-Nikodym). For any twoσ-finite measuresµ
andν on the same measurable space such thatν is absolutely con-
tinuous w.r.t.µ, there is a functionf such thatν(X) =

∫

X
f dµ.

We callf a Radon-Nikodym derivativeof ν with respect toµ,
denoteddν/dµ; pdf corresponds to the Radon-Nikodym operator.
The condition is also necessary: given a satisfyingf , ν is (trivially)
AC. All stock measures we define and all distributions areσ-finite,
so for our purposes absolute continuity is equivalent to possessing
a PDF. Though not necessarily unique, Radon-Nikodym derivatives
are equalµ-almost everywhere. Whenµ is the counting measure,
the Radon-Nikodym derivative is aPMF. For hybrid spaces, it is
a function which must be summed along one dimension and inte-
grated along the other to obtain quantities interpretable as proba-
bilities. Radon-Nikodym derivatives unifyPMFs, PDFs and hybrids
of the two. For this reason, we refer to all of these asPDFs. We use
“ PMF” when we want to emphasize its discrete nature.

Defining a type system for absolute continuity in terms of the
straightforward induction on distribution terms proves unwieldy.
Suppose we want to check if the distribution in Equation 2 isAC;
we must verify that the probability of anyL2-null setZ is zero. A
straightforward induction leads us to trying to show

P({x |
(

var y ∼ random in
return (x, y)

)

(Z) 6= 0}) = 0

whereP is the Uniform(0,1) distribution, and we have abused no-
tation slightly by mingling object language syntax with ordinary
mathematics. This states that the body of the outermost bind assigns
Z probability zero,P-almost always. It is unclear how to proceed
from here or how to remove concepts like null sets from the mech-
anization. We take an alternate approach based on the insight that
we can reason about a distribution by examining how it transforms
other distributions. Our approach, and outline of the following sub-
sections, is as follows:

• We introduce the new notion of anon-nullifying function and
prove a transformation theorem stating that when a random
variable is transformed, the output distribution isAC if the input
distribution isAC and the transformation is non-nullifying. We
also prove some results about non-nullifying functions.

• We define therandom variables transformof any distribution
written in our language and show that for a large class of
distributions the transformation theorem is applicable.

• We present a type system which defines absolute continuity
of a distribution in terms of whether its RV transform is non-
nullifying. As implementors, we have found it easier to come
up with the rules for non-nullifying functions.

Measure-theoretic concepts likeσ-algebras, null sets, and the
Lebesgue measure, while present in the metatheory, do not need
to be operationalized for implementing the type checker. Also, due
to the measure-theoretic foundation, we correctly handle cases that
are not typically explained, such asPDFs on hybrid spaces. We
conclude the section with the semantics of programs.

4.1 Absolute continuity and non-nullifying functions

A functionh : A → B is non-nullifyingif the h-preimage of each
µB-null set isµA-null; preimages of null sets are always null, and
forward images of non-null sets are always non-null. A function
that fails to be non-nullifying is callednullifying. The next theorem
establishes the link between absolute continuity and non-nullity.

Theorem 4.2(Transformation). For a functionh : A → B and an
AC distributionP onA, the distribution

Q(Y) = P(h−1[Y]) (3)

onB is AC if h is non-nullifying.

Proof. Let Y be aµB-null set. By the non-nullity ofh, the set
h−1[Y] is µA-null. By the absolute continuity ofP, we have
P(h−1[Y]) = 0, implying thatY is alsoQ-null.

This style of definingQ may seem odd, but it actually underlies
the use of random variables as a modeling language. For instance,
the modelx ∼ P, y = h(x) exhibits the relationshipQ(Y) =
P(h−1[Y]), whereQ is the distribution ofy. In general, the reverse
direction does not hold;h can be nullifying even ifQ is AC. This
happens whenh has nullifying behavior only in regions of the
space whereP is assigning zero probability. This will be a source
of incompleteness in the type system.

Lemma 4.3(Discrete domain). A functionh : A → R is nullifying
if A is non-empty and countable.

Proof. Letx be an element ofA. The set{x} has positive counting
measure while itsh-image, which is a singleton set, isL-null.

This impliesR of Z is nullifying, meaning that when we view
an integer random variable as a real random variable, it loses its
ability to have aPDF. This is desirable behavior; different spaces
have different ideas of what it means to be aPDF. We would not
want to mark an integer random variable asAC and later attempt to
integrate itsPMF in a context expecting a real random variable.

Lemma 4.4(Discrete codomain). A functionh : A → B is non-
nullifying if B is countable.

Proof. Theh-preimage of the empty set (the onlyC-null set) is the
empty set, which is always null.

This reasoning corroborates the fact that distributions on count-
able spaces always have aPMF.

Lemma 4.5(Interval). A functionh : R → R is nullifying if it is
constant on any interval.

Proof. Let h be constant on(a, b); (a, b) is notL-null, but itsh-
image (a singleton set) isL-null.

One way to visualize how this leads to a non-AC distribution is
to observe that the transformationh takes all the probability mass
along(a, b) and non-smoothly concentrates it onto a single point in
the target space.

Lemma 4.6 (Inverse). An invertible functionh : R → R is non-
nullifying if its inverseh−1 is anabsolutely continuous function.

Proof. We have discussed absolute continuity of measures; the ab-
solute continuity of functions is a related idea. It is a stronger no-
tion than continuity and uniform continuity. Absolutely continuous
functions are well behaved in many ways; in particular, the im-
ages of null sets are also null sets. Coupled with the fact that an
h-preimage is anh−1-image, this proves the claim. More details
on absolutely continuous functions can be found in [17].

This result shows thatlog, exp, and non-constant linear func-
tions are non-nullifying. We believe the idea can be extended with-
out much difficulty to show that functions with a countable number
of invertible pieces, such as the trigonometric functions and non-
constant polynomials, are also non-nullifying.

PREPRINT – DO NOT DISTRIBUTE 6 2011/11/10

Lemma 4.7 (Piecewise). For functionsc : A → B and f, g, h :
A → B, whereh(x) = if c(x) thenf(x) elseg(x), h is non-
nullifying if f andg are non-nullifying.

Proof. Let Y be aµB-null set. The seth−1[Y] is a subset of
f−1[Y] ∪ g−1[Y] and is thusµA-null, by non-nullity off andg,
and the countable additivity and completeness ofµA.

Lemma 4.8(Composition). The set of non-nullifying functions is
closed under function composition.

Proof. Let f : A → B andg : B → C be non-nullifying functions
and leth = g ◦ f . Theh-preimage of aµC -null setZ is given by
h−1[Z] = f−1[g−1[Z]], and is thusµA-null, by the non-nullity of
f andg.

Lemma 4.9 (Projection). The functionh(x, y) = x of type
A×B → A is non-nullifying.

Proof. Let X be aµA-null set. Itsh-preimage isX × B. By the
properties of product measure, we have that

µA×B(X ×B) = µA(X) · µB(B) = 0 · µB(B) = 0.

Even ifµB(B) = ∞, the measure-theoretic definition of multipli-
cation on extended nonnegative reals defines0 · ∞ = 0.

Along these lines, we can show that returning a permutation
of a subset of tuple components is also a non-nullifying function.
The last two results permit us to ignore uninvolved arguments when
reasoning about the non-nullity of the body of a function.

4.2 Distributions and RV transforms

A large class of distributions in our language can be understood
by Equation 3. From the syntax we know that a distributione must
take the form of zero or more nested binds terminating in a body
that is eitherrandom or return ε. We focus on the latter, non-trivial
case. The expressionε represents a transformation of the random
variablesxi introduced by the binds. The functionλ(x1, ..., xn) � ε
is therandom variables transform (RV transform)of the distribu-
tion e, where we use tuple pattern matching shorthand to name the
components of a tuple argument. The correspondence between dis-
tributions in our language and Theorem 4.2 is as follows: letQ be
the denotation ofe, leth be the RV transform ofe, and letP be the
joint distribution of the random variables introduced on the spine of
e. The class of distributions for which the theorem is applicable is
given by the set of distributions for which eachei is parametrically
AC w.r.t. the random variables preceding it, whereei is the distri-
bution corresponding toxi. In other words, the distribution forei
must beAC while treating free occurrences ofx1, ..., xi−1 as fixed,
unknown constants. This ensures that the joint distribution is also
AC; the jointPDFcan be written as the product of the individual pa-
rameterizedPDFs. This is a commonly used (implicit) assumption
in practice. For example, the distribution

var u ∼ random in var z ∼ flip u in return (u+ 〈z〉)
has the RV transformλ(u, z) � u+〈z〉, which has typeR×B → R

and is transforming the joint distribution ofrandom and e2 :=
flip u. The variableu appears free ine2, making e2 parametric
in u; the restriction requires thate2 is AC for all possible values
of u, which is the case here. Two extensionally equivalent dis-
tributions may have different RV transforms and spines because
of intensionally different representations. To show that this choice
of P, Q, andh satisfies Equation 3, we appeal to the semantics
of distributions (defined in Section 3.4). Consider the general case

Υ;Λ ⊢ random AC
AC-RAND

Υ;Λ ⊢ ε NN

Υ;Λ ⊢ return ε AC
AC-RET

Υ; ∅ ⊢ e1 AC Υ ⊢ e1 : dist τ
Υ, x : τ ∼ e1; Λ, x ⊢ e2 AC

Υ;Λ ⊢ var x ∼ e1 in e2 AC
AC-BIND

Figure 4. The absolute continuity judgment,Υ;Λ ⊢ e AC.

e := var xi ∼ ei in return ε, where we have used the bar as short-
hand for nested binds. The denotationQ of e under an environment
ρ is given by

Q(Y) =

∫

dPi λx′
i� 1Y (E [[ε]]ρ{xi 7→ x′

i})

wherePi is the denotation ofei (extendingρ as necessary) and
we have again used the bar notation, to denote iterated expecta-
tion and the repeated extension of the environmentρ with variable
mappings. We can now rewrite the expectations to use their cor-
respondingPDFs fi and then replace the iterated integrals with a
single product integral using their jointPDF f:

Q(Y) =

∫

dµτi
λx′

i �fi(x
′
i;x

′
1, ..., x

′
i−1) · 1Y (E [[ε]]ρ{xi 7→ x′

i})

=

∫

dµτ λx � f(x) · 1Y (h(x))

=

∫

dP λx � 1Y (h(x))

= P({x | h(x) ∈ Y }) = P(h−1[Y])

wherex = (x′
1, ..., x

′
n), h(x) = E [[ε]]ρ{xi 7→ xi}, τi is the type

of eachxi, andτ is their product. We have also used the fact that
the expectation of the indicator function on a set is the probability
of that set (the set here is{x | h(x) ∈ Y }, not Y). Replacing
an iterated integral with a product integral is not always legal but is
possible here because the integral is of a nonnegative function w.r.t.
independent measures (see Tonelli’s theorem, [17]).

4.3 Type system for programs

All judgments are defined moduloα-conversion. A programpdf e
is well-formed if e is an AC distribution (∅ ⊢ e : dist τ holds
for someτ and∅; ∅ ⊢ e AC holds). If the judgmentΥ;Λ ⊢ e AC
(Figure 4) holds thene is anAC distribution under the probability
contextΥ and the active variable contextΛ, whereΛ is given by
the grammarΛ ::= ∅ | Λ, x. Variables inΛ are currently active and
should be understood in a probabilistic sense, while those not inΛ
are inactive and should be treated as fixed parameters. The contexts
obey the following invariant:Λ is always the “prefix” ofΥ, i.e.
the variables inΛ correspond directly to then most recent entries
added toΥ, wheren is the length ofΛ. Rule AC-RAND asserts
that the Uniform(0,1) distribution isAC. The main action of rules
AC-BIND and AC-RETURN is to prepare a call to the non-nullity
judgment. For Theorem 4.2 to be applicable, a distribution along
the spine must be parametricallyAC w.r.t. the random variables
preceding it; thus, inAC-BIND we check thate1 is AC without
marking any current random variables as active. We reach the
body of the RV transform inAC-RETURN. Roughly speaking,Λ
(pointing intoΥ) andε correspond toP andh in Theorem 4.2.

Next is the non-nullity judgment (Figure 5). IfΥ;Λ ⊢ ε NN
holds, thenε represents the body of a non-nullifying function under
Υ andΛ. The variables inΛ are the arguments to the RV transform.
Throughout this discussion, we implicitly use the composition and
projection lemmas (Lemmas 4.8 and 4.9) to ignore uninvolved
arguments during analysis. For example, in ruleNN-VAR, we could

PREPRINT – DO NOT DISTRIBUTE 7 2011/11/10

x ∈ Λ

Υ;Λ ⊢ x NN
NN-VAR

Υ ⊢ ε : τ τ countable
Υ;Λ ⊢ ε NN

NN-COUNT

Υ;Λ ⊢ ε NN op ∈ {neg, inv, log, exp, sin, cos, tan}
Υ;Λ ⊢ op ε NN

NN-OP

Υ;Λ ⊢ ε1 NN Υ;Λ ⊢ ε2 NN

Υ;Λ ⊢ if ε then ε1 else ε2 NN
NN-IF

Υ;Λ ⊢ ε NN op ∈ {fst, snd}
Υ;Λ ⊢ op ε NN

NN-PROJ

Υ;Λ ⊢ ε1 ⊥ ε2 Υ;Λ ⊢ ε1 NN Υ;Λ ⊢ ε2 NN

Υ;Λ ⊢ (ε1, ε2) NN
NN-PAIR

xi ∈ Λ x1, ..., xn are distinct
Υ;Λ ⊢ (x1, ..., xn) NN

NN-VARS

Υ;Λ ⊢ (ε1, ε2) NN

Υ;Λ ⊢ ε1 + ε2 NN
NN-PLUS

FV (ε2) ∩ Λ = ∅ Υ;Λ ⊢ ε1 NN

Υ;Λ ⊢ ε1 + ε2 NN
NN-LINEAR

Υ;Λ ⊢ (ε1, ε2) NN

Υ;Λ ⊢ ε1 ∗ ε2 NN
NN-MULT

l 6= 0 Υ;Λ ⊢ ε NN

Υ;Λ ⊢ l ∗ ε NN
NN-SCALE

Figure 5. The non-nullity judgment,Υ;Λ ⊢ ε NN.

be analyzing a function with multiple inputs, but we can drop all
of them butx, leaving us to analyze the functionλx � x, which
is trivially non-nullifying. Under the hood, what we are actually
doing is representing the original transform as the composition of a
function that selects a single components of a tuple with the identity
function λx � x. The composition lemma is also the justification
for being able to recurse into subexpressions. RuleNN-COUNT
is merely an application of Lemma 4.4; the typesbool, Z and
products thereof define the countable types. Note that this covers
the cases of=, <, integerneg, + and∗, and Boolean and integer
literals. RulesNN-OP, NN-IF andNN-PROJare direct translations of
Lemmas 4.6, 4.7 and 4.9. The injection from integers into the reals
is nullifying (Lemma 4.3), so there is no rule forR of Z. RuleNN-
PAIR expresses the idea that the joint distribution of independent
AC distributions isAC. If Υ;Λ ⊢ ε1 ⊥ ε2 holds thenε1 andε2
represent independent distributions underΥ andΛ. Its definition is

Λ ∩ Anc(Υ, FV (ε1)) ∩ Anc(Υ, FV (ε2)) = ∅
Υ;Λ ⊢ ε1 ⊥ ε2

INDEP

where Anc(Υ, X) =
⋃

x∈X anc(Υ, x). It states thatε1 and ε2
must not have any ancestors in common. The function anc(Υ, x)
computes the ancestors of a random variablex. A random variable
y is the parent of a random variablex if y appears free in the
distribution thatx is bound to. RuleNN-VARS corresponds to the
corollary of Lemma 4.9 that states that you can drop and permute
tuple components. The requirement that the variables are distinct
is important; the distributionvar u ∼ random in return (u, u) is
not AC, as we saw in Section 2. We have multiple rules for addition
because they each capture a different usage of plus. RuleNN-PLUS
states that if the formation of the pair(ε1, ε2) is non-nullifying,
thenε1 + ε2 is also non-nullifying because it is the composition
of tuple formation with(+) : R× R → R, where the latter is non-
nullifying by corollary to Lemma 4.6. RuleNN-LINEAR represents
the idea of composing with the non-nullifying functionλx � x+ c,
wherec is a constant w.r.t. the arguments of the RV transform.
There is an analogous rule for when the constant appears as the left
operand. RulesNN-MULT andNN-SCALE are analogous. Note that
NN-SCALE is slightly weaker than its counterpartNN-LINEAR, only
because it needs to prove that the scaling coefficient is nonzero.

Discussion We believe our type system is sound; the only remain-
ing case to rigorously prove isNN-PAIR. The soundness of the re-
duction to non-nullity is given by Theorem 4.2, and the soundness
of the other cases in the non-nullity judgment are covered by the
lemmas in Section 4.1. Stating the needed lemma forNN-PAIR es-
sentially requires formalizing the idea that the conditional distribu-
tion of the second component conditioned on the first component
should beAC. In non-nullity terms, the second component should
still have a degree of freedom even after fixing the first. Rigorously
stating this involves conditional probability, putting it outside the
scope of the current work.

There are few sources of incompleteness in our type system.
For instance,NN-PAIR conservatively requiresε1 and ε2 to be
independent. The distribution

var x ∼ random in var y ∼ random in return (exp x, x+ y)

is AC despite the fact that the tuple components are not indepen-
dent: even if we know the value ofexp x, the “residual” stochas-
ticity in the quantityx + y is still AC. The joint PDF is given by
multiplying the marginalPDF of the first component by the condi-
tional PDF of the second component conditioned on the first. This
is a similar issue as the parametricAC requirement on spine distri-
butions. Formulating this generalization ofNN-PAIR is interesting
future work. Likewise,NN-IF conservatively requires both branches
of an if-expression to be non-nullifying. The distribution

var x ∼ std normal in return(if x<0 then min x 0 else max x 0)

is not accepted asAC because both branches (λx � min x 0 and
λx � max x 0) are nullifying, even though the distribution is ex-
tensionally equivalent tovar x ∼ std normal in return x, which
is AC. We definemin andmax in the usual way, usingif. Finally,
non-nullity is sufficient but not necessary for absolute continuity to
hold. For instance, the RV transform of

var x ∼ random in return (if x < 100 then x else 100)

is λx � if x < 100 then x else 100, which is nullifying due to the
constant portion, thus our type system does not accept this distribu-
tion asAC. However,x only takes values on(0, 1), so the second
branch is never entered, and thus the distribution is extensionally
equivalent to theAC distributionvar x ∼ random in return x.

4.4 Semantics of programs

The denotation of a programpdf e is that it is a member of the set
of Radon-Nikodym derivatives of the distributione:

[[pdf e]] ∈ {f | ∀X, P(X) =

∫

X

f dµτ}

whereP = E [[e]]{} is the denotation ofe under the empty envi-
ronment ande has typedist τ . The procedure discussed in the next
section calculates a member of this set.

5. Calculating density functions
The previous sections have defined a language in which it is pos-
sible to expressPDFs. Our goal now is to mechanically obtain a
usable form of thePDF for a given distribution. But what consti-
tutes a usable form? We are motivated by applications of thePDF
and the need to interface with existing software. For instance, we
may want to use numerical optimization software to performMLE,
where thePDF appears in the objective function; we may also want
to symbolically derive gradient information to improve the search.
Or, we may want to use thePDF to calculate an expectation using
a numerical integrator. Roughly speaking, we call a term “usable”
if we can map it onto the capabilities of existing software in accor-
dance with common practice. For example, the termλx � x+ 5 is

PREPRINT – DO NOT DISTRIBUTE 8 2011/11/10

Target types σ ::= τ | σ1 → σ2

Target terms δ ::= ε | λx : τ � δ | δ1 δ2 |
∫

δ

Typing
Γ ⊢ δ : τ → R

Γ ⊢
∫

δ : R
T-INT

Semantics E [[
∫

δ]]ρ =

∫

E [[δ]]ρ dµτ

Figure 6. The target language.

usable; in practice, real addition is mapped to floating point addi-
tion. Likewise,

∫ 5

0
x2 dx is usable; the integral is Riemannian and

in a form accepted by computer algebra systems (CAS) and numer-
ical integrators. On the other hand, terms like

∫

g dP anddP/dL
make use of measure-theoretic operations such as abstract integra-
tion and the Radon-Nikodym derivative. Current software do not
handle these operations (though, progress on mechanizing measure
theory has been made [15]). Thus, the basic plan is to eliminate
measure-theoretic concepts duringPDFcalculation. This means the
constructsrandom, return, bind, andpdf should not appear in a
PDF term because they involve measure theory, metatheoretically.

It will take some ingenuity to remove the Radon-Nikodym
derivative (pdf). It has been shown that the Radon-Nikodym deriva-
tive is a non-computable operator: given a distribution, there is no
general computable procedure for computing itsPDF [11]. The dis-
crete case at least enjoys the fact that thePMF has a straightforward
definition in terms of its distribution; ifP is an executable imple-
mentation of a discrete distribution, an executable implementation
of its PMF dP/dC is given byλx �P({x}). In general, however, we
will need to tackle the calculation ofPDFs with a collection of tech-
niques. Our basic approach is as follows. First, we define a target
language that defines what constitutes a usable form. Second, we
provide a procedure that converts many distributions accepted as
AC by our type system intoPDFs expressed in the target language.
Some RV transforms are mathematically inconvenient, so we will
not be able to calculate certainPDFs from scratch; in particular,
dependence between random variables makes the general case dif-
ficult. However, the design permits modularly adding knowledge
about individual distributions with knownPDFs, enabling the pro-
cedure to calculatePDFs for programs that use these distributions
as subcomponents. This allows us to handle many useful cases.

5.1 The target language

The target language extends expressions withλ-abstraction, appli-
cation, and the stock integral (Figure 6). We treat functions in a
standard way. Notationally, we skip specifyingτ in abstractions
when the choice ofτ is clear. Computing closed-form solutions
for integrals is not always feasible or possible, so integrals can-
not be completely eliminated from the target language. The inte-
gral is well-formed if its integrand is real-valued and summable (a
functionf is µ-summableif

∫

f dµ is finite). We require users of
the target language (compiler writers) to manually ensure summa-
bility; this is reasonable for a back-end language. We have veri-
fied summability for each use of stock integration in the compilers
presented in this section. Although a measure-theoretic concept,
stock integration is close enough to the notion of integration used
by numerical and symbolic solvers to be useful as a compilation
target. Recall, stock integration overC andL is ordinary summa-
tion and Lebesgue integration, respectively. For most applications,
Lebesgue integration will coincide with Riemann integration.

random $ δ 7→
∫

λx : R � 〈0 < x < 1〉 ∗ δ x

return ε $ δ 7→ δ ε

e2 $ δ 7→ δ′ e1 $ λx � δ′ 7→ δ′′

var x ∼ e1 in e2 $ δ 7→ δ′′

Figure 7. The probability compiler,e $ δ 7→ δ′.

Υ;Λ ⊢ random y λx : R � 〈0 < x < 1〉 P-RAND

Υ ⊢ e1 : dist τ Υ, x : τ ∼ e1; Λ, x ⊢ e2 y δ

Υ;Λ ⊢ var x ∼ e1 in e2 y δ
P-BIND

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ return ε y δ
P-RET

Figure 8. The distribution-to-PDF converter,Υ;Λ ⊢ e y δ.

5.2 The probability compiler

We need to calculate probabilities as a subroutine ofPDF calcula-
tion. We achieve this by translating distributions into Kozen-style
terms [14]. The probability compilere $ δ 7→ δ′ performs this
translation (Figure 7). It takes a distributione of typedist τ and a
functionδ from τ to [0, 1] and returns the expectation ofδ w.r.t. e.
Whenδ is the indicator function on a setX, δ′ is thee-probability
of X. For instance, suppose we want to know the probability that a
sample fromflip (3/4) is true. We invoke the probability compiler
with e := flip (3/4) andδ := λz : bool � 〈z〉, producing

∫

λx : R � 〈0 < x < 1〉 ∗ (λu � (λz � 〈z〉) (u < 3/4)) x

for δ′, which is equivalent to
∫ 1

0
〈x < 3/4〉 dx = 3/4, as expected.

Likewise, to derive the probability that a standard normal random
variable stays within a standard deviation of its mean, we would
invoke the probability compiler withe := std normal andδ :=
λx � 〈−1 < x < 1〉. Details on how this computes probabilities
are given by Kozen and can also be understood by the expectation
monad [20]. We also need the judgmentΥ ⊢ ε $ δ 7→ δ′, which
invokes the probability compiler on the distribution corresponding
to the RV transform bodyε in the contextΥ.

5.3 ThePDF calculation procedure

We structure thePDF calculation procedure as we did the type sys-
tem: the judgment on distributions prepares a call to the judgment
on RV transforms. ThePDF of a well-formed programpdf e is
given by theδ satisfying∅; ∅ ⊢ e y δ. The judgmentΥ;Λ ⊢
e y δ calculates thePDF δ of the distributione underΥ andΛ
(Figure 8). RuleP-RAND gives thePDF of Uniform(0,1): the indi-
cator function on(0, 1). RulesP-RET andP-BIND build the contexts
and invoke the next compiler. The real work begins in the judgment
Υ;Λ ⊢ ε δ, which computes thePDF δ corresponding to the
RV transform bodyε underΥ andΛ. We present this judgment in
two parts, one each for univariate and multivariate transforms. The
multivariate transforms must deal with the issue of dependence be-
tween inputs or between outputs of the transform.

Univariate transforms We useunivariatefor RV transforms be-
tween spaces that are not product spaces. The correctness of rules
P-LOG, P-EXP, P-LINEAR, andP-SCALE is given by the following
lemma.

PREPRINT – DO NOT DISTRIBUTE 9 2011/11/10

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ log ε λx : R � δ (exp x) ∗ exp x
P-LOG

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ exp ε λx : R � δ (log x) ∗ (1/x) P-EXP

FV (ε2) ∩ Λ = ∅ Υ;Λ ⊢ ε1 δ

Υ;Λ ⊢ ε1 + ε2 λx : R � δ (x− ε2)
P-LINEAR

Υ;Λ ⊢ ε δ l > 0

Υ;Λ ⊢ l ∗ ε λx : R � δ (x/l) ∗ (1/l) P-SCALE

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ neg ε λx : R � δ (−x)
P-NEG

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ inv ε λx : R � δ (1/x) ∗ (1/(x ∗ x)) P-INV

Figure 9. The transform-to-PDF converter,Υ;Λ ⊢ ε δ, univari-
ate cases.

Lemma 5.1. For absolutely continuous distributionsP andQ on
R and a functionh : R → R such thatQ(Y) = P(h−1[Y]), if h is
strictly increasing, differentiable and invertible, then the function

g(y) = f(h−1(y)) · d

dy
h−1(y).

is a PDF ofQ, wheref is the derivative of theCDF F of P.

Proof. The derivative of aCDF is aPDF. TheCDF G of Q is

G(y) = Q((−∞, y]) = P(h−1[(−∞, y]])

= P((−∞, h−1(y)]) = F (h−1(y)),

where we have used the fact that theh-preimage of(−∞, y] is
(−∞, h−1(y)] becauseh is strictly increasing and invertible. The
claim follows from the fact thatg is the derivative ofG.

The lemma is easily modified forP-NEG and alsoP-INV ; an
“extra” minus sign appears because they consist of strictlydecreas-
ing components. It is possible to define a version ofP-SCALE for
negative literals, as well as integer versions ofP-NEG, P-LINEAR,
and P-SCALE. With these rules (andP-VAR, discussed below) we
can already compute some continuousPDFs. Consider the stan-
dard exponential from Section 3.2; we derive itsPDF with ∅; ∅ ⊢
std exponential y δ, which builds the contextsΛ := u and
Υ := u : R ∼ random and invokes the chain

Υ;Λ ⊢ −log u δ δ′′ := λx′′
� 〈0 < x′′ < 1〉

Υ;Λ ⊢ log u δ′ δ′ := λx′
� 〈0 < exp x′ < 1〉 ∗ exp x′

Υ;Λ ⊢ u δ′′ δ := λx � 〈0<exp (−x)<1〉 ∗ exp (−x).

We β-reduce for clarity. The chain ends withP-VAR, which gives
the PDF of Uniform(0,1) forδ′′; then,P-LOG andP-NEG produce
δ′ andδ. The latter is equivalent toλx � 〈0 < x〉 ∗ exp (−x), which
is easily seen to be thePDF of the standard exponential. Likewise,
thePDF of uniform ε1 ε2 is correctly calculated to be

δ := λx � 〈0 < (x− ε1)/(ε2 − ε1) < 1〉 ∗ (1/(ε2 − ε1)),

which is equivalent toλx � 〈ε1 < x < ε2〉 ∗ (1/(ε2 − ε1)). We do
not provide rules forsin, cos, andtan because we are unaware of
any simple closed-form expression for the correspondingPDFs.

Multivariate transforms We usemultivariatefor RV transforms
to or from a product space. The presence of multiple dimensions
introduces the issue of dependence between the inputs or between
the outputs of the transform, making it difficult to provide rules that
work in the general case. As a result, some of the following rules
introduce specific independence requirements.

∅ ⊢ l : τ τ countable
Υ;Λ ⊢ l λx : τ � 〈x = l〉 P-LIT

Υ ⊢ ε : bool Υ;Λ ⊢ ε $ λx : bool � 〈x〉 7→ δ

Υ;Λ ⊢ ε λx : bool � if x then δ else 1− δ
P-BOOL

{Υ;Λ ⊢ ε1 ⊥ εi}i=2,3 {Υ;Λ ⊢ εi δi}i=1,2,3

Υ;Λ ⊢ if ε1 then ε2 else ε3
λx � δ1 true ∗ δ2 x+ δ1 false ∗ δ3 x

P-IF

Λ = {x} ⊔ {y1, ..., ym} J (Υ;Λ) 7→ δ

Υ;Λ ⊢ x λx �
∫

λ(y1, ..., ym) � δ
P-VAR

Λ = {x1, ..., xn} ⊔ {y1, ..., ym} J (Υ;Λ) 7→ δ

Υ;Λ ⊢ (x1, ..., xn) λ(x1, ..., xn) �
∫

λ(y1, ..., ym) � δ
P-VARS

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ fst ε λx �
∫

λy � δ (x, y)
P-FST

Υ;Λ ⊢ ε1 ⊥ ε2 {Υ;Λ ⊢ εi δi}i=1,2

Υ;Λ ⊢ (ε1, ε2) λ(x1, x2) � δ1 x1 ∗ δ2 x2
P-PAIR

Υ;Λ ⊢ ε1 ⊥ ε2 {Υ;Λ ⊢ εi δi}i=1,2

Υ;Λ ⊢ ε1 + ε2 λx : R �
∫

λt : R � δ1 x ∗ δ2 (t− x)
P-PLUS

Figure 10. The transform-to-PDF converter, multivariate cases.

J (Υ; ∅) 7→ 1
J-NIL

Υ; ∅ ⊢ e y δ J (Υ;Λ) 7→ δ′

J (Υ, x : τ ∼ e; Λ, x) 7→ δ x ∗ δ′ J-CONS

Figure 11. The jointPDF body constructor,J (Υ;Λ) 7→ δ.

RuleP-LIT states that thePMF of a point mass distribution onl is
simply the indicator function on{l}. The transforms corresponding
to the rules in this section tend to be less obvious; the transform in
question forP-LIT is the constant function onl, whose argument
may be a tuple. RuleP-BOOL calculates thePMF of a Boolean
random variable, which is a simple expression of the probability
that the random variable is true. We thus invoke the probability
compiler in the current context to compute this probabilityδ. This
rule covers the cases for< and=. The ability to represent the
PMF of a Boolean random variable allows us to encode arbitrary
probability queries. RuleP-IF computes thePDF of a mixture,
which is a weighted combination of the componentPDFs, where
the mixing probability is the probability theif-condition istrue.
For this to be valid, theif-condition must be independent of its
branches, as required. For instance, thePDF of

var x ∼ random in
var y ∼ uniform 2 3 in return (if x < 1/2 then x else y).

is notequivalent toλx � (1/2) ∗ 〈0<x<1〉+ (1/2) ∗ 〈2<x<3〉,
as would be calculated without the restriction (there should be no
probability mass on[1/2, 1]).

Rule P-VAR is a special case ofP-VARS. The transform corre-
sponding toP-VARS is a function that returns a permutation of a
subset of components of its tuple argument. We assumex1, ..., xn

andy1, ..., ym are distinct, and we use⊔ to denote disjoint union.
The resultingPDF is a marginalPDF. Themarginal PDF of a joint
PDF f on A × B is given byg(x) =

∫

λy � f(x, y) dµB ; g is
a PDF on A whose density atx is given by adding up the contri-
bution of the jointPDF along the other dimension,B. The corre-
sponding process is one which generates tuples but then discards
the second component, returning the first. We generalize to higher
dimensions by integrating out random variables not appearing in
the result tuple. When this set is empty (m = 0), the integral re-

PREPRINT – DO NOT DISTRIBUTE 10 2011/11/10

duces toδ. The resultingPDF may be computationally inefficient
due to a large number of nested integrals. More efficient schemes
that take advantage of the graphical structure of the probabilistic
model, such asvariable elimination, are possible [26]. The judg-
mentJ (Υ;Λ) 7→ δ constructs the body of the jointPDF of the
active random variables (Figure 11). RuleJ-CONS first computes
the PDF of e, parametric in all of the preceding random variables
(thus, invoking the distribution-to-PDFconverter with no active ran-
dom variables). It then constructs the product with thePDFs of the
remaining active variables; the product of these parametricPDFs is
the jointPDF. The termsδ andδ′ in J-CONShave typeτ → R and
R, respectively. The judgment returns an open term and relies on
the fact that the free variables will be bound appropriately by the
invoking judgment. RuleP-FST is analogous toP-VARS; we ask for
a PDF and compute the marginalPDF of the first component. We
define an analogous rule forsnd. RulesP-PAIR and P-PLUS state
the well known results that the jointPDF and thePDF of the sum of
independent random variables is the product of and convolution of
their individualPDFs, respectively.

On the face of it, these rules handle mixture models and joint
models, but where they really shine is on general hierarchical mod-
els. For example, thePDF of

hier := var x ∼ random in var y ∼ uniform 0 x in return y

is not immediately obvious. The process is generated by sampling
a valuex uniformly from (0,1), and then sampling uniformly from
(0, x), discardingx. We calculate thePDF with ∅; ∅ ⊢ hier y δ,
which buildsΥ := y : R ∼ uniform 0 x, x : R ∼ random and
Λ := y, x for Υ;Λ ⊢ y δ. RuleP-VAR then produces

λy �

∫

λx �(〈0<(y−0)/(x−0)<1〉∗1/(x−0))∗〈0<x<1〉∗1

for δ, where we haveβ-reduced for clarity. The body of the innerλ-
abstraction is generated by the jointPDF body constructor; the two
non-trivial multiplicands are the parametricPDF of uniform 0 x
and thePDF of random, respectively. With some manipulation we
can showδ corresponds tof(y) =

∫ 1

y
1/x dx = − log(y) for

y ∈ (0, 1) and zero otherwise. The rules do not perform algebraic
simplifications, but the benefit of automation can still be felt clearly.

Modularity Some RV transforms are inconvenient to work with,
preventing us from calculating certainPDFs. For example, we can-
not calculate thePDFof std normal from scratch because its speci-
fication usescos, which we do not handle. However, the design al-
lows us to modularly address cases like this, where we want to spe-
cially handle thePDF for a specific distribution. We can add the rule
Υ;Λ ⊢ std normal y φ, whereφ :=λx�exp(−x∗x/2)/sqrt(2∗π)
is the PDF of the standard normal. This new rule is used by the
joint body constructor wheneverstd normal appears on the spine
of a distribution, enabling the calculation ofPDFs for hierarchical
models usingstd normal that were previously not compilable. For
example, thePDF of normal µ σ can now be calculated as

Υ;Λ ⊢ σ ∗ x+ µ δ δ′′ := λx′′
� φ x′′

Υ;Λ ⊢ σ ∗ x δ′ δ′ := λx′
� φ (x′/σ) ∗ (1/σ)

Υ;Λ ⊢ x δ′′ δ := λx � φ ((x− µ)/σ) ∗ (1/σ)
using the rulesP-VAR, P-SCALE, andP-LINEAR, whereΛ := x and
Υ := x : R ∼ std normal. We can seeδ is equivalent to the classic
formula for the normalPDF, f(x) = 1

σ
√
2π

exp(− 1
2σ2 (x − µ)2).

Likewise, we can now handle distributions like the log-normal and
mixture-of-Gaussians. To support an infinite discrete distribution
with a knownPDF, such as the Poisson distribution, we can add
a new primitive to the core calculus (poisson ε) and handle it
specially in the distribution-to-PDF converter.

6. Related Work
Our work builds on a long tradition of probabilistic functional lan-
guages, most connected to the probability monad in some way.
They work by incorporating distributional semantics into a func-
tional language, so that one can express values which represent a
distributionover possible outcomes. The distribution can either be
manifest (available to the programmer) or implicit (existing only
in the metatheory). An early incarnation of the latter was given by
Kozen in [14], in which he provides the semantics for an imperative
language endowed with a random number primitive supplying sam-
ples from Uniform(0,1). Values of typeA in the object language are
given semantics in functions of type(A → [0, 1]) → [0, 1] in the
metatheory. These functions represent distributions overA and sat-
isfy the expected laws for measures. Kozen’s work is far-reaching
and will continue to inspire future languages: it can accommodate
continuous and hybrid distributions; it handles unbounded itera-
tion (general recursion), a traditionally thorny issue for probabilis-
tic languages; and it even provides a treatment of distributions on
function types. However,PDFs are not addressed at all.

Though not explicitly cast as functional or monadic, Kozen’s
approach forms the basis for Audebaud and Paulin-Mohring’s
monadic development for reasoning about randomized algorithms
in COQ [2]. Their focus is on verification, and they define the prob-
ability monad from first principles (modulo an axiomatization of
arithmetic on the [0,1] interval), whereas we provide it axiomati-
cally. We hope to inspire a cross-fertilization of ideas between the
efforts as we bring our theory ofPDFs intoCOQ.

While suitable for semantics and verification, Kozen’s represen-
tation is not ideal for direct use in computing certain operations. For
instance, it is unclear how to sample or compute general expecta-
tions efficiently given a term of type(A → [0, 1]) → [0, 1]. More
recent works explore alternate concrete embodiments of the prob-
ability monad; Ramsey and Pfeffer discuss some of the possibili-
ties [20]. A popular choice is to represent distributions as weighted
lists or trees. This has the drawback that only distributions with
finitely many outcomes are expressible (ruling out essentially all
commonly used continuous distributions), andPMFs are the only
supported form ofPDFs. On the other hand, distributions can occur
on arbitrary types, expectation and computing thePMF is straight-
forward, and the approach works well as an embedded domain-
specific language (PFP [7], HANSEI [13], probability monads in
Haskell [20]). Dedicated languages likeIBAL [19] or Church [9]
offer more scope for program analysis, which is crucial for escap-
ing the limitations of an embedded approach and mitigates some of
the fundamental drawbacks of the representation. Ultimately, how-
ever, these languages do not support continuous or hybrid distribu-
tions (nor theirPDFs) in a general sense. Sampling functions are a
fun alternative representation. They are used byλ© [18] to support
continuous and hybrid distributions in a true sense and also allow
distributions on arbitrary types. Distributions are represented by
sampling functions that return a sample from the distribution when
requested. Sampling and sampling-based routines are the only sup-
ported operations, thusPDFs are not accommodated.

Another recent work also rigorously supports continuous and
hybrid distributions by providing a measure transformer semantics
for a core functional calculus [4]. The work does not providePDFs
but is novel for its ability to support conditional probability in the
presence of zero probability events in continuous spaces, a feature
necessary in many machine learning applications. Their formaliza-
tion is similar to ours, as both are based in standard measure theory.
They have independently recognized the importance of analyzing
distributions by their transformations, doing so in the context of
conditional probability, whereas we have developed the idea for
PDFs. This hints that reasoning via transforms may be a technique

PREPRINT – DO NOT DISTRIBUTE 11 2011/11/10

that is more broadly applicable to other program analyses for prob-
abilistic languages.

The Hierarchical Bayes Compiler (HBC) is a toolkit for im-
plementing hierarchical Bayesian models [5]. Its specification lan-
guage represents a different point in the design space. Essentially,
it removesreturn while adding a set of standard distributions (with
PDFs) to the core calculus. This guarantees that all constructible
models areAC. Many powerful models used in machine learning
are expressible inHBC. However, something as basic as adding two
random variables is not. Furthermore, if a distribution outside of
the provided set is required, it must be added to the core. This is the
fundamental tension surroundingreturn: with it, the core is mini-
mal, expressivity is high, andPDFs are non-trivial; without it,PDFs
are easily supported, but the core becomes large, and expressivity
is crippled.HBC is not formally defined.

An entirely different tradition incorporates probabilistic se-
mantics into logic programming languages (Markov Logic [21],
BLOG [16], BLP [12], PRISM [22]). These languages are well suited
for probabilistic knowledge engineering and statistical relational
learning. In Markov Logic, for instance, programmers associate
higher weights with logical clauses that are more strongly believed
to hold. The semantics of a set of clauses is given byundirected
graphical models, with the weights determining the potential func-
tions (e.g. by Boltzmann weighting). Certain continuous distri-
butions can be supported by manipulating the potential function
calculation. SupportingPDFs in this context should not be prob-
lematic; the potential functions (essentially, unnormalizedPDFs)
always exist, by design. However, likeHBC, it appears these lan-
guages are not quite as expressive as is possible in a probabilistic
functional language.

The AutoBayes system [10] shares a key feature with our lan-
guage in thatPDFs are manifest in the object language. AutoBayes
automates the derivation of maximum likelihood and Bayesian es-
timators for a significant class of statistical models, with a focus
on code generation, and can express continuous distributions and
PDFs. However, despite their focus on correctness-by-construction,
the language is not formally defined. Furthermore, it is unclear how
general the language actually is,i.e. how “custom” the models can
be. Our work could serve as a formal basis for their system.

7. Conclusion
We have presented a formal language capable of expressing dis-
crete, continuous and hybrid distributions and theirPDFs. Our novel
contributions include a type system for absolutely continuous dis-
tributions and a modularPDF calculation procedure. The type sys-
tem uses the new ideas of RV transforms and non-nullifying func-
tions. There are several interesting avenues for future work. The
first is to addressPDFs in the context of conditional probability,
perhaps by incorporating our formalization ofPDFs with the ideas
presented in [4]. Secondly, to provide a complete account of con-
tinuous probability, one must support expectation. Generically sup-
porting expectation requires a treatment of integrability or summa-
bility; reasoning via the RV transform may be a productive route.
Finally, combining this work with a formal language for optimiza-
tion such as [1] would create a true formal language forstatistics,
which would be able to express statistical problems in the object
language itself. Current languages expressprobability; any notion
of statistics is outside the language.

Acknowledgments
We thank Prof. Christopher Heil for valuable input on the idea of
non-nullifying functions. We also thank the anonymous reviewers,
whose thoughtful suggestions have greatly improved the paper.

References
[1] A. Agarwal, S. Bhat, A. Gray, and I. E. Grossmann. Automating Math-

ematical Program Transformations. InPractical Aspects of Declara-
tive Languages, 2010.

[2] P. Audebaud and C. Paulin-Mohring. Proofs of Randomized Algo-
rithms in Coq. InMathematics of Program Construction, pages 49–68.
Springer, 2006.

[3] C. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[4] J. Borgstram, A. D. Gordon, M. Greenberg, J. Margetson, and J. V.
Gael. Measure Transformer Semantics for Bayesian Machine Learn-
ing. In European Symposium on Programming, pages 77–96, 2011.

[5] H. Dauḿe III. HBC: Hierarchical Bayes Compiler, 2007. URL
http://hal3.name/HBC.

[6] L. Devroye. Non-Uniform Random Variate Generation, 1986.

[7] M. Erwig and S. Kollmansberger. Functional Pearls: Probabilistic
Functional Programming in Haskell.Journal of Functional Program-
ming, 16(01):21–34, 2005.

[8] M. Giry. A Categorical Approach to Probability Theory.Categorical
Aspects of Topology and Analysis, 915:68–85, 1981.

[9] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenen-
baum. Church: A Language for Generative Models. InUncertainty in
Artificial Intelligence, 2008.

[10] A. G. Gray, B. Fischer, J. Schumann, and W. Buntine. Automatic
Derivation of Statistical Algorithms: The EM Family and Beyond. In
Advances in Neural Information Processing Systems, 2003.

[11] M. Hoyrup, C. Rojas, and K. Weihrauch. The Radon-Nikodym oper-
ator is not computable. InComputability & Complexity in Analysis,
2011.

[12] K. Kersting and L. De Raedt. Bayesian Logic Programming: Theory
and Tool. InIntroduction to Statistical Relational Learning. 2007.

[13] O. Kiselyov and C. Shan. Embedded Probabilistic Programming. In
Working Conference on Domain Specific Languages. Springer, 2009.

[14] D. Kozen. Semantics of Probabilistic Programs.Journal of Computer
and System Sciences, 22(3):328–350, 1981.

[15] T. Mhamdi, O. Hasan, and S. Tahar. On the Formalization of the
Lebesgue Integration Theory in HOL.Interactive Theorem Proving,
pages 387–402, 2010.

[16] B. Milch, B. Marthi, S. Russell, D. Sontag, D. Ong, and A.Kolobov.
BLOG: Probabilistic Models with Unknown Objects. InInternational
Joint Conference on Artificial Intelligence, volume 19, 2005.

[17] O. Nielsen. An Introduction to Integration and Measure Theory.
Wiley-Interscience, 1997.

[18] S. Park, F. Pfenning, and S. Thrun. A Probabilistic Language based
upon Sampling Functions. InPrinciples of Programming Languages,
pages 171–182. ACM New York, NY, USA, 2005.

[19] A. Pfeffer. IBAL: A Probabilistic Rational Programming Language.
In International Joint Conference on Artificial Intelligence, 2001.

[20] N. Ramsey and A. Pfeffer. Stochastic Lambda Calculus and Monads
of Probability Distributions. volume 37, pages 154–165. ACM, 2002.

[21] M. Richardson and P. Domingos. Markov Logic Networks.Machine
Learning, 62(1):107–136, 2006.

[22] T. Sato and Y. Kameya. PRISM: A Symbolic-Statistical Modeling
Language. InInternational Joint Conference on Artificial Intelligence,
pages 1330–1339, 1997.

[23] D. Scott. Parametric Statistical Modeling by Minimum Integrated
Square Error.Technometrics, 43(3):274–285, 2001.

[24] B. Silverman. Density Estimation for Statistics and Data Analysis.
Chapman & Hall/CRC, 1986.

[25] R. Solovay. A Model of Set-Theory in Which Every Set of Reals is
Lebesgue Measurable.Annals of Mathematics, pages 1–56, 1970.

[26] L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.

PREPRINT – DO NOT DISTRIBUTE 12 2011/11/10

