PREPRINT — DO NOT DISTRIBUTE

A Type Theory for Probability Density Functions

Sooraj Bhat

Georgia Institute of Technology
sooraj@gatech.edu

Abstract

There has been great interest in creating probabilistic programming
languages to simplify the coding of statistical tasks; however, there
still does not exist a formal language that simultaneously provides
(1) continuous probability distributions, (2) the ability to naturally
express custom probabilistic models, and (3) probability density
functions eDFs). This collection of features is necessary for mech-
anizing fundamental statistical techniques. We formalize the first
probabilistic language that exhibits these features, and it serves a
a foundational framework for extending the ideas to more general
languages. Particularly novel are our type systemafasolutely
continuous(Ac) distributions (those which permitbrs) and our
PDF calculation procedure, which calculatesrs for a large class

of Ac distributions. Our formalization paves the way toward the
rigorous encoding of powerful statistical reformulations.

Categories and Subject Descriptors  F.3.2 [Logics and Meanings

of Program$ Semantics of Programming Languages—Program
analysis; F.3.1ljogics and Meanings of ProgramsSpecifying
and Verifying and Reasoning about Programs—Mechanical verifi-
cation; G.3 Probability and Statistids Statistical computing

General Terms Theory, Languages

Keywords Continuous Probability, Probability Density Functions

1. Introduction

In the face of more complex data analysis needs, both the ma-
chine learning and programming languages communities have rec-
ognized the need to express probabilistic and statistical computa-
tions declaratively This has led to a proliferation of probabilistic
programming languages [7, 9, 12-14, 16, 18-22]. Program trans-
formations on probabilistic programs are crucial: many techniques
for converting statistical problems into efficient, executable algo-
rithms are syntactic in nature. A rigorous language definition aids
reasoning about the correctness of these program transformations.
However, several fundamental statistical techniques cannot cur-
rently be encoded as program transformations because current lan
guages have weak support for probability distributions on contin-
uous or hybrid discrete-continuous spaces. In particular, no exist-
ing language rigorously supports expressingatubability density
function (PDF) of custom probability distributions. This is an im-
pediment to mechanizing statistics; continuous distributions and

Ashish Agarwal

New York University
ashish.agarwal@nyu.edu

Richard Vuduc, Alexander Gray

Georgia Institute of Technology
{richie,agray}@cc.gatech.edu

their PDFs are ubiquitous in statistical theory and applications.
Techniques such as maximum likelihood estimationg), L» esti-
mation  2e), and nonparametric kernel methods are all formulated
in terms of thePDF [3, 23, 24]. Specifically, we want the ability to
naturally express a probabilistic model over a discrete, continuous
or hybrid space and then mechanically obtain a usable form of its
PDF. Usage of thebFmay entail direct numerical evaluation of the
PDF or symbolic manipulation of thebr and its derivatives. Con-

ginuous spaces pose some unique obstacles, however. First, the exis-

tence of theeDFis not guaranteed, unlike the discrete case. Second,
stating the conditions for existence involves the language of mea-
sure theory, an area of mathematics renowned for nonconstructive
results, suggesting that mechanization may not be straightforward.
Notably, obtaining @bFfrom its distribution is a non-computable
operation in the general case [11]. In light of these issues, we make
the following new contributions:

¢ We present a formal probability language with classical measure-
theoretic semantics which allows naturally expressing a variety
of useful probability distributions on discrete, continuous and
hybrid discrete-continuous spaces, as well as thefs when
they exist (Section 3). The language is a core calculus which
omits functions and mutation.

We define a type system fabsolutely continuougrobabil-

ity distributions,i.e. those which permit @DF. The type sys-
tem does not require mechanizimgalgebras, null sets, the
Lebesgue measure, or other complex constructions from mea-
sure theory. The key insight is to analyze a distribution by how it
transforms other distributions instead of using the “obvious” in-
duction on the monadic structure of the distribution (Section 4).

We define a procedure that calculatesrs for a large class

of distributions accepted by our type system. The design per-
mits modularly adding knowledge about individual distribu-
tions with knownpDFs (but which cannot be calculated from
scratch), enabling the procedure to proceed with programs that
use these distributions as subcomponents (Section 5).

We believe this is the first general treatmentofrs in a language.

We deliberately omit features that are not essential to the current
investigation €.g. expectation, sampling). Finally, we discuss the
relation to existing and future work (Sections 6 and 7). In particu-
lar, we save a treatment BbFs in the context of conditional prob-
ability for future work.

2. Background and motivation

We first introduce probability in the context of countable spaces to
emphasize the complications that arise when moving to continuous
spaces. We focus only on issues surroundings. We occasionally
deviate from standard probability notation to circumvent impreci-
sion in the standard notation and to create a harmonious notation

[Copyright notice will appear here once "preprint’ option is removed.] throughout the paper. In this section we present a specialized ac-

PREPRINT — DO NOT DISTRIBUTE 2011/11/10



08 1.0
0.3 0.4

04 06
0.2

0.2
0.1

0.0
0.0

04 06 08 1.0

0.2

0.0

Figure 1. Thecbr andpPDF of a standard normal distribution and theF of a distribution that does not haverarF.

count of probability for ease of exposition. We discuss the rigorous
and generalized definitions in Section 3.3.

We use the terndiscrete distributiorfor distributions on dis-
crete spaces (countable set)ntinuous distributiorfor distribu-
tions on the continuous spacRsandRR"™; andhybrid distribution

for distributions on products of discrete and continuous spaces that

are themselves neither discrete nor continuous, sughag.

2.1 Probability on countable spaces

Consider a set of outcome$. For now, letA be countable. It is
meant to represent the possible states of the world we are modeling
such as the set of possible outcomes of an experiment or measur
ments of a quantity. Aevents a subset ofA, also understood as a
predicate on elements of. Events denote some occurrence of in-
terest and partition the outcomes into those that exhibit the property
and those that do not. probability distributionP (or simply,distri-
butior) on A is a function from events tfo), 1] such thatf?(X) > 0

for all eventsX, P(A) = 1 andP(J;2, Xi) = >0, P(X;) for
countable sequences of mutually disjoint evekits Distributions

tell us the probability that different events will occur. It is gener-
ally more convenient to work with a distributiongsobability mass
function(PMF) instead, defined(z) = P({x}), which tells us how
likely an individual outcome is. It satisfies

B(X) =Y f(a)

reX

for all eventsX on A. For example, ifP is the distribution char-
acterizing the outcome of rolling a fair die, iBvMF is given by
f(z) = ¢, wherez € AandA = {1,2,3,4,5,6}. The probabil-
ity an even number is rolled B({2,4,6}) = ¢ + ¢ + ¢ = 3

5
2.2 Moving to continuous spaces

A probability density functioPDF) is the continuous analog of the
PMF. Unfortunately, although every distribution on a countable set
has aPMF, not every distribution on a continuous space hasa
Consider distributions on the real line. We say that a funcfios
aPDFof a distributionP onR if for all eventsX,

Mﬂ:LﬂﬂM7 1)

which states that the probability of is the integral off on X (in
the simplest caseX is an interval). This idea can be extended to
more general spaces. This equation does not deterfniméquely,
but any two solutiong; and f, are equal “almost everywhere” (see
Section 3.3) and give identical results under integration. Thus, we
often refer to &eDF asthe PDF.

For the spaces we consider in this paper, the property of having
a PDFis equivalent to beingbsolutely continuouéac). Roughly
speaking, a distribution isc if it never assigns positive probabil-

and has theDF ¢(z) = exp(—z?/2)/v/27. On the other hand,
the distribution ofy in the model

does not have abr. We have usedandom variablego write the
model; this is a commonly used informal notation that is shorthand
for a more rigorous expression that defines the model. The model
represents the following process: flip a fair coin; return 0O if it is
heads, and sample from the standard normal distribution otherwise.
We can see that it is netc: the event{0} occurs with probability

0
T

if z = heads
if z = tails.

z ~ CoinFlip(1/2)
x ~ Normal(0, 1)

e1/2 (whenever the coin comes up heads), but has an interval length

of zero. We use theumulative distribution functiogcbr) to vi-
sualize each distribution (Figure 1); tk®F F of a distributionP
onRis F(z) = P( (—o0,z] ) and gives the probability that a
sample from the distribution takes a value less than or equal to
From Equation 1 we know th& has apDFif and only if there ex-
ists a functionf such thatF'(z) = [“_ f(t) dt. Clearly, no such
function exists for theDF of y due to the jump discontinuity.
Mixing discrete and continuous types is not the only culprit.
Consider the following process: sample a numbeuniformly
randomly from[0, 1] and return the vector = (u,u) € R
The distribution ofz (a distribution onR?) is not Ac: the event
X = {(u,u) | uw € [0,1]} has probability 1, butX is a line
segment and thus has zero area. Likewise, thererdronR? we
could integrate to give positive mass on this zero area line segment.

2.3 Applications of thePDF

The PDFis often used to compute expectations (and probabilities,
which are a special case of expectation). Expectation is a funda-
mental operation in probability and is used in defining quantities
such as mean and variance. The expectation opef@tafra distri-
butionP onR is a higher-order function that satisfies

Blo)= [ gla)- f(o) da
whenP has aPDF, f, and the integral exists. Another application is
maximum likelihood estimatiopvLE), which addresses the prob-
lem of choosing the member of a family of distributions that “best
explains” observed data. L&( - ; - ) be a parameterized family of
distributions, wher( - ; 0) is the distribution for a given parame-
terd. ThemLE estimated™ of IP for observed data is given by

0" = arg max f(xz;0)

where f(-;0) is the PDF of P(-;#). For example,x could be
a set of points iNnR™ we wish to cluster, and™ could be the
estimate of the locations of the cluster centroiisvould be the
family of distributions we believe generated the clusters (a family

ity to events that have “size zero” in the underlying space. For in- parameterized by the positions of the cluster centroids), such as a
stance, the standard normal distribution is absolutely continuous mixture-of-Gaussians model. More details are available in [3].

PREPRINT — DO NOT DISTRIBUTE 2011/11/10



2.4 Challenges for language design
Categorically, probability distributions form a monad [8, 20]. This

structure forms the basis of many probabilistic languages because

itis minimal, elegant, and presents many attractive features. First, it
provides the look and feel of informal random variable notation, al-
lowing us to express models as we normally would, while remain-
ing mathematically rigorous. The monad structure affords formu-
lating probability as an embedded domain specific language [7, 13,
18, 20] or as a mathematical theory in a proof assistant [2]. Addi-
tionally, many proofs about distributions expressed in the probabil-
ity monad are greatly simplified by the monadic structure. We feel
itis desirable to structure a language around the probability monad,
and we investigate supportimpFs specifically in such languages.
The probability monad consists of monadic return and monadic

bind, as usual. Monadic return corresponds to the point mass distri-

bution. We also provide the Uniform(0,1) distribution as a monadic

Variables  z,y,z,u,v Literals l
Basetypes T :=bool |Z|R |7 X 72
Types tu=r7|distT
Expressions e:x=x |l |op €1...en | if €1 then ez else g3
Primops op =+ |*|neg|inv|=|<| ()] fst|snd

| exp | log | sin | cos | tan | Roof _Z

Distributions e ::=random | return ¢ | var x ~ ey in ez

Programs p:=pdfe
Contexts I'u=0|T,z:7 Tu=0|T,z:7~e
Substitution e[z := €] Free variables FV(-)

Figure 2. The abstract syntax.

value. These three combinators can be used to express a variety of

distributions. The main issue when designing a type system for ab-
solute continuity is that return creates nea-distributions (on con-
tinuous types), yet—as a core member of the monadic calculus—it
appears in the specification of nearly every distribution, even those
thatare Ac. The “obvious” induction along the monadic structure
is difficult to use to prove absolute continuity in the cases of inter-
est. Consider for instance the joint distribution of two independent
Uniform(0,1) random variables, written in our language as

var x ~ random in var y ~ random in return (z,y). (2)

Itis AC even though the subexpressioaturn (z,y) andvar y ~
random in return (z,y) are bothnot Ac, where we treat andy

as real numbers, as dictated by the typing rule for bind. Also, as
implementors we have found it difficult to “eyeball” the rules for
absolute continuity. For example, only the first of these distribu-
tions isac even though they are all nearly identical to Equation 2:

var x ~ random in var y ~ random in return (x, z + y)
var x ~ random in var y ~ random in return (x,y — y)

var x ~ random in var y ~ random in return (z,y, x + y)

Clearly, what is needed is a principled analysis. We provide this in
Section 4. A natural urge is wanting to remoneurn to create

a language in which onhac distributions are expressible. We
feel this is undesirable. Withoutturn, we would not be able

3. Thelanguage

In this section we present the abstract syntax, type system and
semantics for our probabilistic language, except for the parts related
to PDFs, which we cover in Section 4.

3.1 Abstract syntax

Figure 2 contains the syntax definitions. In addition to the stan-
dard letters for variables, we also useand v when we want to
emphasize that a random variable is distributed according to the
Uniform(0,1) distribution. The syntactic category for literals in-
cludes Booleankol), integer Z), and real numberR) literals.
Types are stratified to ensure that distributiodst(r) are only

over base types. Integers are a distinct type from the reals; there
is no subtyping in the language. We also stratify terms to simplify
analysis. Expressions and primitive operations (primops) take their
standard mathematical meaning, unless noted otherwise. For sim-
plicity, we overload addition, multiplication, negation, and integer
literals on the integers and reals, but fundamentally there-is a
for integers and a separate for reals,etc Inversioninv denotes

the reciprocal operation, andg is the natural logarithm. We give
our semantics in terms of classical mathematics, so we do not con-
cern ourselves with the issue of computation on the reals. Equality
is defined on all base types in the usual way, and less-than is de-
fined only on the numeric types. We write1, ez, ...,en—1,n)

to express something as simple as adding two random variablesas shorthand fote1, (2, ...(€n—1,€x)...)). The functionR_of _Z

(consider(z + y) instead of(x,y) in Equation 2). Essentially,
return allows us to express random variables as transformations
of other random variables—a fundamental modeling tool we feel
should be supported, allowing users to write down models that most
naturally capture their domain. Withowtturn we must extend the
core calculus for each transformation we wish to use on random
variables, and we must do so carefully if we want to ensure that
non-Ac distributions remain inexpressible. This extension of the
core detracts from minimality and elegance, and it complicates
developing the theory in a verification environment sucttas,
one of our eventual goals.

Finally, in addition to checking for existence, we would like to
also calculate a usable form for theF. Many current probabilis-
tic languages focus on distributions with orflgitely many alter-
natives, which allows for implementing distributions as weighted
lists of outcomes. The probability monad in this case is similar to
the list monad, with some added logic describing how bind should

injects an integer into the reals. The distributiemdom corre-
sponds to the Uniform(0,1) distribution. The next two constructs
correspond to monadic return and bind for the probability monad.
The distributionreturn ¢ is thepoint mass distributionwhich as-
signs probability 1 to the evert}. A random variable distributed
according toreturn ¢ is in fact deterministic: there is no variation

in the value it can take. The bind construety = ~ e; in e2,

is used to build complex distributions from simpler ones. It can
be read: “introduce random variable distributed according to
the distributione;, with scope in the distributior.”. It is the

only binding construct in the language. For simplicity, we have
chosen to omit let-bindings and functions from our language, but
we use both in our examples. We can use standard substitution
rules to reduce such examples to the syntax of Figure 2. Exam-
ples include(s) if € then 1 else 0 (to inject Booleans into
the reals)g1 — g2 1= €1 + neg €2, €1/e2 1= €1 * inv €2, and

€1 < €2 < €3 := if &1 < &2 then 2 < &3 else false. Finally,

propagate the weights. The weighted lists correspond directly to the free variables, capture-avoiding substitution, and typing contexts

PMF, but no such straightforward computational strategy exists for
thePDF. We explore this further in Section 5.

PREPRINT — DO NOT DISTRIBUTE

(T") are defined in the usual way. The probability conféxs used
to additionally keep track of the distributions that random variables

2011/11/10



are bound to. When we u$g in placesI" is expected, the under-
standing is that the extra information carried Bys ignored.

3.2 Examples of expressible distributions
With just random, return, and bind, we can already construct a

wide variety of distributions we might care to use in practice.

ple from. For instance, a simple mixture-of-Gaussians is given by
mix (1/2) std_normal std_normal. We have defined discrete and
continuous distributions, and now we can ys@ to define non-
trivial hybrid distributions as well, such &sin (flip (1/2)) random,
which has typelist (bool x R). Essentiallyjf-expressions enable
mixture models and tuples enable joint models. These two concepts

Though we do not have a formal proof of this expressivity, existing are special cases bferarchical modelswhich are models that are
work on sampling suggests that this is the case. Non-uniform ran- defined in stages. Distributions defined using nested instances of
dom variate generation is concerned with generating samples frombind correspond to hierarchical models.

arbitrary distributions using only samples from Uniform(0,1) [6].

These examples are alt, but we can also express naw-dis-

We can see the connection with our language if we view the con- tributions, such as the example from Section 2, wriftenpy :=
structs by a sampling analogy, which emphasizes understanding amix (1/2) (return 0) std_normal. In our languaggiumpy will suc-

distribution by its generating process: the phraser ~ e; in ez
samples a value from the sampling functior,, which is used
to create a new sampling functien; random samples from the
Uniform(0,1) distributionyeturn £ always returng as its sample.
For instance, thetandard normal distributioman be defined in our
language using the Box-Muller sampling method:

var u, ~ random in var v ~ random in

std_normal := return (sqrt(—2  log u) * cos(2 * 7 * v))

wheresqrt € := exp ((1/2) * log ). In particular, our language is
amenable tinverse transform sampling.ikewise, we can express
other common continuous distributions:
std_logistic :=

var u ~ random in

return (log (1/u — 1))
std_exponential :=

var u ~ random in

return (—log u)

uniform ey g2 =
var u ~ random in
return ((g2 —e1) *u+¢€1)
normal g1 g9 =
var x ~ std_normal in
return (e2 % = + €1)

These are the Uniform(b), standard logistic, standard exponential,
and Normaly, o) distributions. We intentionally parameterize the

normal distribution by its standard deviation instead of its variance,
for simplicity. We define it as a transformation of a standard normal

random variable and requieg > 0. We can also express discrete
distributions, such as the coin flip distribution,

flip e :== var u ~ random in return (u < ),

which takes the valugrue with probabilitye. This is equivalent to

the Bernoulli distribution. In fact, we can express any distribution

with finitely many outcomes:

var u ~ random in
return (if u < 1/3 then 10 else if u < 2/3 then 20 else 30)

Admittedly, a more satisfying definition would be possible if we

cessfully type check as a distribution, but the proggadfi jumpy

will be rejected—as it should be—becaugenpy is not abso-
lutely continuous. The ability to represent naa-distributions,
even though they cannot be used in programs, is in anticipation of
future language features such as expectation and sampling, which
canbe used with norc distributions.

3.3 Measure theory preliminaries

Measure theory is the basis of modern probability theory and uni-
fies the concepts of discrete and continuous probability distribu-
tions. It is a precise way of defining the notion of volume. We de-
velop our formalization within this framework. We give only a brief
overview of the necessary concepts; details are available in [17].

Basics Let A be a set we wish to measure.dAalgebra M on

A is a subset of the powersft A) that contains4 and is closed
under complement and countable union. The gair M) is a
measurable spacé subsetX of A is M-measurabléf X € M.

In the context of probabilityA is the set of outcomes ant is

the set of events. For a functioh: A — B, the f-imageof a
subsetX of A, written f[X], denotes the setf(z) | = € A},

and thef-preimageof a subsett” of B, written ffl[Y], denotes

the set{z € A | f(z) € Y}. When f is on measurable spaces,
we sayf is (Ma, M p)-measurablevhen thef-preimage of any

M p-measurable set 81 ,-measurable. Measurable functions are
closed under composition. We drop the prefix andrs@gasurable

(for functions or sets) when it is clear what thealgebras are. The
o-algebra machinery is needed to ensure a consistent theory; there
are spaces which contain pathological sets that violate intuition
about volume,e.g. the Banach-Tarski “doubling ball” paradox.
Measure theory sidesteps these issues by preferring measurable sets
and functions as much as possible. Wheis countable, no such
problems arise, and we can always téked) for M.

had lists in the language. The reason we do not is that, although oth-Measures A nonnegative functiop : M — R+U{00ioi5 amea-
ers have addressed recursion and iteration in the context of definingsureif x(0) = 0, u(X) > 0 for all X in M, andu (U2, Xi) =

probability distributions [14], we have not yet fully reconciled re-

> ooy 1(Xy) for all sequences of mutually disjoitd; (countable

cursion withPDFs. The absence of recursion also means that we do additivity). The triple (A, M, 1) is ameasure spacdf addition-

not support distributions in the style odjection samplingmeth-

ally u(A) = 1 thenp is a probability measurgconventionally

ods, which resample values until a stopping criterion is met. Fur- Written P), and the triple is grobability space\We use the terms

thermore, we do not elegantly suppfinite discrete distributions

probability measurgprobability distributionanddistributioninter-

in the core language, many of which are naturally described using changeably. We usé to denote the counting measure, which uses
recursion. However, in Section 5 we describe how to add special the number of elements of a set as the set's measure. Wg use

support for any distribution with a knowrDF.

to denote the Lebesgue measurelonwhich assigns the length

We also define some higher-order concepts. The following func- |b — a| to an open intervala, b); the sizes of other sets can be un-

tions are used to create joint distributions and mixture models:

mix € e1 ez :=
var z ~ flipein
var ri1 ~ e in
var o ~ es in
return (if z then z; else x2).

joiney ez :=
var ri ~ e1 in
var s ~ ez in
return (x1,x2)

derstood by complements and countable unions of intervals. The
product measurg 4 ® up Of two measureg 4 andpz On measur-
able space$A, M 4) and (B, Mp) is the measurg, on A x B
and the product-algebraM 4 ® Mg, such that

p(X X Y) = pa(X) - pp(Y)

for X € M4 andY € Mp. The measure is unique when, and

The mixture model is created by flipping a coin with the specified pp areo-finite. Theo-finiteness condition is a technical condition

probability to determine which component distribution to sam-

PREPRINT — DO NOT DISTRIBUTE

that is satisfied by all measures we will consider in this paper and

4 2011/11/10



requires that the space can be covered by a countable number o
pieces of finite measure.

Null sets A measurable seX is p-null if 4(X) = 0; X is said

to haveu-measure zero. The empty set is always null, the only
¢-null set is the empty set, and all countable subsef® afe £-
null. A propositional function holdg-almost everywhereufa.e.)

if the set of elements for which the proposition does not hold is
p-null. For instance, two functions of tydeé — R are equalg-
almost everywhere if they differ at only a countable number of
points. A measure spadel, M, u1) is completeif all subsets of
any p-null set areM-measurableCompletionis an operation that
takes any measure spacé, M, 1) and produces an “equivalent”
complete measure spagé, M’, 11") such thap'(X) = u(X) for

X € M. Null sets are ubiquitous in measure theory, so it will be
handy to work in spaces that support null sets as much as possible
Thus, completion makes measure spaces nicer to work withnThe
dimensional Lebesgue measweis then-fold completed product

of £. For measureg andv on a measurable spaaeis absolutely
continuouswith respect tqu if eachp-null set is alsa-null.

Integration A fundamental operation involving measures is the
abstract integral a generalization of the Riemann integral that
avoids some of its deficiencies. The abstract integral of a measur-
able functionf : A — R w.r.t. a measurg on A is written [ f dy.

The integral is always defined for nonnegatjfeThe integral for
arbitrary f is defined in terms of the positive and negative parts of
f and may not exist; if idoeswe sayf is u-integrable. We write
Jx f dp as shorthand fof Az . 1x(z) - f(x) dp, which restricts
the integral to the subséf. We write1 x for the indicator function

on X . Expectatiorrefers to abstract integration w.r.t. a distribution.
The abstract integral satisfieg§ X) = [ 1x du for all measur-
able X. In terms of probability, it says that the probability &f is

the expectation ol x. Another consequence is that null sets can-
not affect integration: two functions that are equad.e. give the
same results under integration w.ut.Abstract integration w.r.&£
and £ is ordinary (possibly infinite) summation and the ordinary

f
I' - random : dist R

I'ke:r

T-RAND .
'k returne : dist 7

T-RET

I'teq:distm
I'Fvarz ~ejines : dist 7

Iz :m Feo:dist

T-BIND

Figure 3. Standard monadic typing rules for distributions.

explicitly noted otherwise. We say that a distribution s Ac if
itis Ac with respect tqu 4.

Densities A function f is a pDF of a distribution? on A if
X) = [y f dp, for all measurableX. Expectation can be
written using theeDF.

Jow=[xe.g)- s@) du,.

A joint PDF is the PDF of a joint distribution, which is simply
a distribution on a product space. We later use the fact that the
joint PDF f of a model such ag1 ~ Pi,z2 ~ Pa(-;21) can
be written as the product of the individual (parameterizenys:

flz1,z2) = fi(zy) - fa(z2;x1).

3.4 Type system and semantics for distributions

We now discuss the type system and semantics for syntactic cate-
gories besides programs. The type system for expressions is ordi-
nary. We assume an external mechanism for enforcing the precon-
ditions necessary to ensure totality of functions, such as an auto-
mated theorem prover or the programmer themself. For instance,
log must be applied to only positive real numbers. Distributions

obey standard monadic typing rules (Figure 3). The “random vari-

ables” introduced by bind are really just normal variables and are

typed as such; calling them random variables is a reminder about
the role they play. The typing rules ensure that random variables

Lebesgue integral, respectively. The Lebesgue integral agrees withare never used outside a probabilistic context.

the Riemann integral on Riemann-integrable functions.

Measurability Ordinarily, to conclude that a distribution such as
var ¢ ~ e in return (f z) is well-formed, we are obligated to
verify that f is a measurable function. However, non-measurable
sets and functions are actually quite pathological and constructing
them requires the Axiom of Choice [25]. None of the constructs in
our language are as powerful as the Axiom of Choice (though we do
not have a formal proof of this), thus all constructible expressions

We give our language a semantics based in classical mathemat-
ics with total functions. Base types have the usual meaning. The
denotation oflist 7 is the set of distributions possible an

Tdist 7] = {P | (T[r], M, P) is a probability space
We overload stock measure space notation for types; ihlisand

7, are shorthand foM 7,; andfir,;. LetEe]p be the denota-
tion of a distributiore under the environment, also overloaded for

represent measurable functions. This discharges the obligation, andXpressions. Expressions have the semantics of their correspond-

we do not make any further mention of checking for measurability.

Stocked spaces For most applications, we often have a standard

idea of how spaces are measured. We now formalize this practice.

A spaceA is astocked spaci it comes equipped with a complete
measure spadel, M4, i , ), Which is thestock measure spacé
A. We callM 4 thestocko-algebraof A andfi , thestock measure
of A. The abstract integral w.rfi , is thestock integralof A. We
define stock measure spaces for the spiices{true false}, Z, R,
and product spaces between stocked spaces as follows:

(Mg, 1i5) = (P(B), €)
(Mlvﬁl) = (P(Z)a Q:)
(Mg, Tiz) = (the £-measurable set€)
(Maxp, fiayp) = completiofMa @ Mg, iy Qig).

This definition matches what is used in practieeg. € becomes
the measure for countable spaces, gfidbecomes the measure for

ing forms from classical mathematics. As stated befanedom is
the Uniform(0,1) distribution
E[random]p = AX . £(X N[0,1]),
which says that the probability of an eveklitis its “interval size”
on [0,1]. Return is the point mass distribution
Elreturn e]p = AX . 1x(E[e]p),

which gives an evenX probability 1 as long as it includes the
outcomes. Bind expresses the Law of Total Probability,

Elvarz ~erinex]p =AY .//\a:' fE(Y) dP,

where f(z") = E[e2](p{z — 2'}) andP = E[e1]p. The family

of distributionse; is parameterized by the variahie in essence.
The probability of an event” is the “average opinion” (th&-
expectation) of what each member of the family thinks is the
probability of Y. The integral exists because it is the expectation

R™. For the rest of the paper, we assume spaces are stocked, unlessf a bounded function.

PREPRINT — DO NOT DISTRIBUTE

2011/11/10



4. Type system and semantics for programs Theorem 4.2(Transformation) For a functionh : A — B and an

The programpdf e is well-formed if the distributiore permits a Ac distribution’ on A, the distribution

PDF. The following theorem gives us a sufficient condition. QYY) =P(h'Y]) (3

Theorem 4.1(Radon-Nikodym) For any twoo-finite measureg, on Bis Ac if h is non-nullifying.

andv on the same measurable space such thigtabsolutely con-

tinuous w.r.t, there is a functiory such that/(X) = [, f dp. Proof. Let Y be apz-null set. By the non-nullity ofh, the set
RT[Y] is fis-null. By the absolute continuity oP, we have

We call f a Radon-Nikodym derivativef » with respect tqu,
denoteddv /dyu; pdf corresponds to the Radon-Nikodym operator.
The condition is also necessary: given a satisfying is (trivially)

Ac. All stock measures we define and all distributionsaffinite,

so for our purposes absolute continuity is equivalent to possessing
aPDF. Though not necessarily unique, Radon-Nikodym derivatives
are equalu-almost everywhere. Whem is the counting measure,
the Radon-Nikodym derivative is eMF. For hybrid spaces, it is

a function which must be summed along one dimension and inte-
grated along the other to obtain quantities interpretable as proba-
bilities. Radon-Nikodym derivatives unifymrs, PDFs and hybrids

of the two. For this reason, we refer to all of theseass. We use Lemma 4.3(Discrete domain) A functionh : A — R is nullifying
“PMF” when we want to emphasize its discrete nature. if A'is non-empty and countable.

Defining a type system for absolute continuity in terms of the
straightforward induction on distribution terms proves unwieldy. Proof. Letx be an element ofl. The sef{«} has positive counting

P(h~'[Y]) = 0, implying thatY " is alsoQ-null. O

This style of defining) may seem odd, but it actually underlies
the use of random variables as a modeling language. For instance,
the modelz ~ P, y = h(z) exhibits the relationshi@(Y) =
P(h~'[Y]), whereQ is the distribution ofy. In general, the reverse
direction does not hold; can be nullifying even ifQ is Ac. This
happens wherk has nullifying behavior only in regions of the
space wher is assigning zero probability. This will be a source
of incompleteness in the type system.

Suppose we want to check if the distribution in Equation 2ds measure while itd-image, which is a singleton set,gsnull. [
we must verify that the probability of ang?-null setZ is zero. A
straightforward induction leads us to trying to show This impliesR_of _Z is nullifying, meaning that when we view
) an integer random variable as a real random variable, it loses its
P({z | ( var y ~ random in ) (Z)£0}) =0 ability to have apDF. This is desirable behavior; different spaces
return (z, y) have different ideas of what it means to bemr. We would not

whereP is the Uniform(0,1) distribution, and we have abused no- Wantto mark an integer random variablesasand later attempt to
tation slightly by mingling object language syntax with ordinary integrate itsMF in a context expecting a real random variable.
mathematics. This states that the body of the outermost bind assigng emma 4.4 (Discrete codomain) A functionk : A — B is non-

Z probability zero,P-almost always. It is unclear how to proceed  nylifying if B is countable.

from here or how to remove concepts like null sets from the mech-

anization. We take an alternate approach based on the insight thabroof. The h-preimage of the empty set (the ordynull set) is the

we can reason about a distribution by examining how it transforms empty set, which is always null.

other distributions. Our approach, and outline of the following sub-

sections, is as follows: This reasoning corroborates the fact that distributions on count-

¢ We introduce the new notion of mon-nullifying function and able spaces always havesr.

prove a transformation theorem stating that when a random Lemma 4.5(Interval). A functionk : R — R is nullifying if it is

variable is transformed, the output distributiomsif the input constant on any interval.

distribution isac and the transformation is non-nullifying. We

also prove some results about non-nullifying functions. Proof. Let h be constant offa, b); (a, b) is not £-null, but its h-
image (a singleton set) &-null. O

¢ We define theandom variables transforrof any distribution
written in our language and show that for a large class of

distributions the transformation theorem is applicable. One way to visualize how this leads to a nea-distribution is

to observe that the transformatiartakes all the probability mass

* We present a type system which defines absolute continuity along(a, b) and non-smoothly concentrates it onto a single point in
of a distribution in terms of whether its RV transform is non-  the target space.

nullifying. As implementors, we have found it easier to come . . . .
up with the rules for non-nullifying functions. Lemma 4.6 (Inverse) An invertible functiom, : R — R is non-

nullifying if its inverseh ! is anabsolutely continuous function
Measure-theoretic concepts like-algebras, null sets, and the
Lebesgue measure, while present in the metatheory, do not neetProof. We have discussed absolute continuity of measures; the ab-
to be operationalized for implementing the type checker. Also, due solute continuity of functions is a related idea. It is a stronger no-
to the measure-theoretic foundation, we correctly handle cases thation than continuity and uniform continuity. Absolutely continuous
are not typically explained, such @prs on hybrid spaces. We  functions are well behaved in many ways; in particular, the im-

conclude the section with the semantics of programs. ages of null sets are also null sets. Coupled with the fact that an
h-preimage is arh~'-image, this proves the claim. More details

4.1 Absolute continuity and non-nullifying functions on absolutely continuous functions can be found in [17]. O

A functionh : A — B is non-nullifyingif the h-preimage of each ) .

forward images of non-null sets are always non-null. A function tions are non-nullifying. We believe the idea can be extended with-
that fails to be non-nullifying is calledullifying. The next theorem out much difficulty to show that functions with a countable number

establishes the link between absolute continuity and non-nullity. ~ Of invertible pieces, such as the trigonometric functions and non-
constant polynomials, are also non-nullifying.

PREPRINT — DO NOT DISTRIBUTE 6 2011/11/10



Lemma 4.7 (Piecewise) For functionsc : A — B and f,g,h : T:AE e NN

A — B, whereh(z) = if ¢(z) then f(z) elseg(z), h is non- T AC-RAND = AC-RET
nullifying if f andg are non-nullifying. T; Ak random AC T; A return e AC
T;0+ e AC T ke :distr
Proof. Let Y be afig-null set. The setv ![Y] is a subset of Tz:7~eAzheAC AC-BIND
fH YU g™t [Y] and is thusz ,-null, by non-nullity of f andg, T; A varx ~epines AC

and the countable additivity and completenesg of O

Figure 4. The absolute continuity judgment;; A - e AC.

Lemma 4.8(Composition) The set of non-nullifying functions is

closed under function composition. _
e:=varxz; ~ e;inreturne, where we have used the bar as short-

Proof. Let f : A — Bandg : B — C be non-nullifying functions hand for nested binds. The denotati@rof e under an environment

and leth = g o f. The h-preimage of &i-null setZ is given by pis given by

h=t[Z] = f~ g *[Z]], and is thugi ,-null, by the non-nullity of

£ andg. o dP; Az 1y (E[e]p{xi — x1})

o ) whereP; is the denotation oé; (extendingp as necessary) and

Lemma 4.9 (Projection) The functionh(z,y) = =z of type we have again used the bar notation, to denote iterated expecta-

A x B — Ais non-nullifying. tion and the repeated extension of the environmentth variable
mappings. We can now rewrite the expectations to use their cor-

Proof. Let X be afi 4-null set. Itsh-preimage isX x B. By the respondingPDFs f; and then replace the iterated integrals with a

properties of product measure, we have that single product integral using their joirDFf:

m X XB)=pu,X) pug(B)=0-ug(B)=0. _—
Paxa(X % B) = Ba(X) Ep(B) =0-Pa(B) Q) = [ i Aol filaliats ) A (€Ll T D)
Even iffig (B) = oo, the measure-theoretic definition of multipli-
cation on extended nonnegative reals defiheso = 0. O */dﬁf Ax. f(x) -1y (h(x))

Along these lines, we can show that returning a permutation dP Ax. 1
of a subset of tuple components is also a non-nullifying function. x. 1y (h(x))
The last two results permit us to ignore uninvolved arguments when _
¢ 3 . =P({x | h(x) €Y}) = P(h"'[V])

reasoning about the non-nullity of the body of a function.
wherex = (z1,...,x},), h(x) = E[e]p{z: — x:}, 7i is the type

4.2 Distributions and RV transforms of eachz;, andr is their product. We have also used the fact that
A large class of distributions in our language can be understood the expectation of the indicator function on a set is the probability
by Equation 3. From the syntax we know that a distributianust of that set (the set here i | h(x) € Y}, notY). Replacing
take the form of zero or more nested binds terminating in a body an iterated integral with a product integral is not always legal but is
that is eitherrandom or return . We focus on the latter, non-trivial possible here because the integral is of a nonnegative function w.r.t.
case. The expressianrepresents a transformation of the random independent measures (see Tonelli’s theorem, [17]).

variablesr; introduced by the binds. The functiofz1, ..., z,). €

is therandom variables transform (RV transformf the distribu- 4.3 Type system for programs

tion e, where we use tuple pattern matching shorthand to name theAll judgments are defined modute-conversion. A programdf e
components of a tuple argument. The correspondence between disis well-formed if e is an Ac distribution () - e : dist 7 holds
tributions in our language and Theorem 4.2 is as followsQldte for somer and®; - e AC holds). If the judgment; A - ¢ AC

the denotation o, let h be the RV transform of, and letP be the (Figure 4) holds them is anAc distribution under the probability
joint distribution of the random variables introduced on the spine of contextY and the active variable conteAt, whereA is given by

e. The class of distributions for which the theorem is applicable is the gramman ::= @ | A, z. Variables inA are currently active and

given by the set of distributions for which eachis parametrically should be understood in a probabilistic sense, while those nt in

Ac w.r.t. the random variables preceding it, wherés the distri- are inactive and should be treated as fixed parameters. The contexts
bution corresponding ta;. In other words, the distribution far; obey the following invariantA is always the “prefix” ofY, i.e.

must beac while treating free occurrences ef, ..., ;1 as fixed, the variables im\ correspond directly to the most recent entries

unknown constants. This ensures that the joint distribution is also added toY, wheren is the length ofA. Rule AC-RAND asserts
AC; the jointPDF can be written as the product of the individual pa-  that the Uniform(0,1) distribution isc. The main action of rules
rameterizedPDFs. This is a commonly used (implicit) assumption  Ac-BIND and AC-RETURN is to prepare a call to the non-nullity
in practice. For example, the distribution judgment. For Theorem 4.2 to be applicable, a distribution along
the spine must be parametricaljc w.r.t. the random variables

~ i ~ fli i L ! ; ;i
var u r~ random in var z ip win return (u + (2)) preceding it; thus, imc-BIND we check thate; is AC without

has the RV transform(u, z) . u+ (z), which has typ® x B — R marking any current random variables as active. We reach the
and is transforming the joint distribution eéndom ande, := body of the RV transform imc-RETURN. Roughly speakingA

flip w. The variableu appears free ir2, makinges parametric (pointing intoY) ande correspond td@ andh in Theorem 4.2.

in u; the restriction requires that is Ac for all possible values Next is the non-nullity judgment (Figure 5). If; A F ¢ NN

of u, which is the case here. Two extensionally equivalent dis- holds, there represents the body of a non-nullifying function under
tributions may have different RV transforms and spines because Y andA. The variables in\ are the arguments to the RV transform.

of intensionally different representations. To show that this choice Throughout this discussion, we implicitly use the composition and
of P, Q, and h satisfies Equation 3, we appeal to the semantics projection lemmas (Lemmas 4.8 and 4.9) to ignore uninvolved
of distributions (defined in Section 3.4). Consider the general case arguments during analysis. For example, in nule VAR, we could

PREPRINT — DO NOT DISTRIBUTE 7 2011/11/10



Thke:T T countable
T;AFeNN
op € {neg,inv, log, exp, sin, cos, tan}
YT;AFopeNN
T;AF e NN T;AF ea NN
Y; A if € then g1 else e2 NN
T;AFeNN op € {fst,snd}
T;AFopeNN
T;A"é‘lLEQ T;A"SlNN
T;AF (61,52) NN
r; €A 1, ..., T, are distinct
T; A+ (z1,...,25) NN
T;A (61,62) NN
T;A &1+ e2 NN
FV(e2)NA=10 T; Ak e1 NN
T;A &1 +e2 NN
T; Al (e1,e2) NN
T;AF &1 %2 NN

x €N
T;AF x NN
T;AFeNN

NN-VAR NN-COUNT

NN-OP

NN-IF

NN-PROJ

T;AF e2 NN
NN-PAIR

NN-VARS

NN-PLUS

NN-LINEAR

l#0 T;AFenNN

NN-MULT o A F Tx e NN

NN-SCALE

Figure 5. The non-nullity judgment)’; A - ¢ NN.

be analyzing a function with multiple inputs, but we can drop all
of them butz, leaving us to analyze the functioxx . =, which
is trivially non-nullifying. Under the hood, what we are actually

Discussion We believe our type system is sound; the only remain-
ing case to rigorously prove i$N-PAIR. The soundness of the re-
duction to non-nullity is given by Theorem 4.2, and the soundness
of the other cases in the non-nullity judgment are covered by the
lemmas in Section 4.1. Stating the needed lemmaifoiPAIR es-
sentially requires formalizing the idea that the conditional distribu-
tion of the second component conditioned on the first component
should beac. In non-nullity terms, the second component should
still have a degree of freedom even after fixing the first. Rigorously
stating this involves conditional probability, putting it outside the
scope of the current work.

There are few sources of incompleteness in our type system.
For instance NN-PAIR conservatively requires; andes to be
independent. The distribution

var ¢ ~ random in var y ~ random in return (exp x,z + y)

is AC despite the fact that the tuple components are not indepen-
dent: even if we know the value ekp z, the “residual” stochas-
ticity in the quantityx + y is still AC. The jointPDF is given by
multiplying the marginabDF of the first component by the condi-
tional PDF of the second component conditioned on the first. This
is a similar issue as the parametsic requirement on spine distri-
butions. Formulating this generalization ofi-PAIR is interesting
future work. LikewiseNN-1F conservatively requires both branches
of anif-expression to be non-nullifying. The distribution

var z ~ std_normal in return(if 2 <0 then min z 0 else max x 0)

is not accepted asc because both branchesa(. min x 0 and
Az . max z 0) are nullifying, even though the distribution is ex-

doing is representing the original transform as the composition of a tensionally equivalent tear = ~ std_normal in return z, which
function that selects a single components of a tuple with the identity iS AC. We definemin andmax in the usual way, using. Finally,

function Az . . The composition lemma is also the justification
for being able to recurse into subexpressions. RUeCOUNT
is merely an application of Lemma 4.4; the typesol, Z and

non-nullity is sufficient but not necessary for absolute continuity to
hold. For instance, the RV transform of

var z ~ random in return (if z < 100 then z else 100)

products thereof define the countable types. Note that this covers

the cases of, <, integerneg, + andx, and Boolean and integer
literals. RulesuN-OP, NN-IF andNN-PROJare direct translations of

is Az . if £ < 100 then z else 100, which is nullifying due to the
constant portion, thus our type system does not accept this distribu-

Lemmas 4.6, 4.7 and 4.9. The injection from integers into the reals tion asAc. However,z only takes values of0, 1), so the second

is nullifying (Lemma 4.3), so there is no rule fBrof_Z. RuleNN-

branch is never entered, and thus the distribution is extensionally

PAIR expresses the idea that the joint distribution of independent equivalent to thewc distributionvar z ~ random in return z.

AC distributions isAc. If Y;A + &1 L &2 holds thens; andes
represent independent distributions untfeandA. Its definition is

A N Anc(Y, FV(e1)) N Anc(Y, FV(e2)) =0
T; A = €1 1 E2

where An¢Y, X) = |J,xanqY,z). It states that: and e2
must not have any ancestors in common. The functiorfane)
computes the ancestors of a random variablé random variable
y is the parent of a random variableif y appears free in the
distribution thatz is bound to. RuleyvN-vARS corresponds to the

INDEP

corollary of Lemma 4.9 that states that you can drop and permute
tuple components. The requirement that the variables are distinct

is important; the distributionar « ~ random in return (u,w) is
notAc, as we saw in Section 2. We have multiple rules for addition
because they each capture a different usage of plus.NRukeLUS
states that if the formation of the pdit1,e2) is non-nullifying,
thene; + e2 is also non-nullifying because it is the composition
of tuple formation with(+) : R x R — R, where the latter is non-
nullifying by corollary to Lemma 4.6. RuleN-LINEAR represents
the idea of composing with the non-nullifying function: . x + ¢,
wherec is a constant w.r.t. the arguments of the RV transform.

4.4 Semantics of programs

The denotation of a prograpdf e is that it is a member of the set
of Radon-Nikodym derivatives of the distributien

[pdf ¢] € {f | VX, P(X) = /X fda,}

whereP = &[e]{} is the denotation oé under the empty envi-
ronment ana has typedist 7. The procedure discussed in the next
section calculates a member of this set.

5. Calculating density functions

The previous sections have defined a language in which it is pos-
sible to expres®DFs. Our goal now is to mechanically obtain a
usable form of theeDF for a given distribution. But what consti-
tutes a usable form? We are motivated by applications ofthre

and the need to interface with existing software. For instance, we
may want to use numerical optimization software to perforne,
where therDF appears in the objective function; we may also want
to symbolically derive gradient information to improve the search.

There is an analogous rule for when the constant appears as the lefOr, we may want to use theDdF to calculate an expectation using

operand. RulesiN-MULT andNN-SCALE are analogous. Note that
NN-SCALEIs slightly weaker than its counterpami-LINEAR, only
because it needs to prove that the scaling coefficient is nonzero.

PREPRINT — DO NOT DISTRIBUTE

a numerical integrator. Roughly speaking, we call a term “usable”
if we can map it onto the capabilities of existing software in accor-
dance with common practice. For example, the tanm « + 5 is

8 2011/11/10



Targettypes o :=171| 01 — 02
Targetterms § ::=¢ | Az : 7.8 | 01 2 | /6

'-é6:7—R
Fl—f(S:R

Semantics 8[[/5]];): /5[[5]]p dpt,

Typing T-INT

Figure 6. The target language.

usable; in practice, real addition is mapped to floating point addi-
tion. Likewise,f05 z? dx is usable; the integral is Riemannian and
in a form accepted by computer algebra systeoassf and numer-
ical integrators. On the other hand, terms likg dP anddP/dg

random$6n—>/>\:r:R. O<z<l)*dx

returne$d+—d¢e

e $5— ¢ e1$ A r.8 — 8’
varz ~ ey ines $6 — "

Figure 7. The probability compilerg $ 6 +— &'.

P-RAND
T;AFrandom ~ Az :R.(0 <z < 1)

Tk e :distT T,z:7~e;; A,xbeannd
T;AFvarz~eiines N9
T;AFe~d
T;AFreturne ~ §

P-BIND

P-RET

make use of measure-theoretic operations such as abstract integra- Figure 8. The distribution-toPDF converter; A - e ~ .

tion and the Radon-Nikodym derivative. Current software do not

handle these operations (though, progress on mechanizing measure

theory has been made [15]). Thus, the basic plan is to eliminate
measure-theoretic concepts durirgF calculation. This means the
constructsrandom, return, bind, andpdf should not appear in a
PDFterm because they involve measure theory, metatheoretically.

It will take some ingenuity to remove the Radon-Nikodym
derivative pdf). It has been shown that the Radon-Nikodym deriva-
tive is a non-computable operator: given a distribution, there is no
general computable procedure for computingits[11]. The dis-
crete case at least enjoys the fact thatrtfe has a straightforward
definition in terms of its distribution; iP is an executable imple-
mentation of a discrete distribution, an executable implementation
of its PMF dP/dC is given byA\z . P({x}). In general, however, we
will need to tackle the calculation eDFs with a collection of tech-

nigues. Our basic approach is as follows. First, we define a target

5.2 The probability compiler

We need to calculate probabilities as a subroutineo calcula-
tion. We achieve this by translating distributions into Kozen-style
terms [14]. The probability compilez $ § — ¢ performs this
translation (Figure 7). It takes a distributierof type dist 7 and a
functioné from 7 to [0, 1] and returns the expectation dfv.r.t. e.
Wheny/ is the indicator function on a sé¢, §’ is thee-probability

of X. For instance, suppose we want to know the probability that a
sample fronflip (3/4) is true. We invoke the probability compiler
with e := flip (3/4) andd := Az : bool . (z), producing

/)\m:R.<0<m<1)*()\u.()\z.<z>)(u<3/4)):c

language that defines what constitutes a usable form. Second, Weor 4, which is equivalent t(fol (x < 3/4) dv = 3/4, as expected.
provide a procedure that converts many distributions accepted as jkewise, to derive the probability that a standard normal random

AC by our type system inteDFs expressed in the target language.
Some RV transforms are mathematically inconvenient, so we will
not be able to calculate certafbFs from scratch; in particular,

variable stays within a standard deviation of its mean, we would
invoke the probability compiler witle := std_normal andd :=
Az . (—1 < z < 1). Details on how this computes probabilities

dependence between random variables makes the general case difre given by Kozen and can also be understood by the expectation

ficult. However, the design permits modularly adding knowledge
about individual distributions with knowrDFs, enabling the pro-
cedure to calculateDprs for programs that use these distributions
as subcomponents. This allows us to handle many useful cases.

5.1 The target language

The target language extends expressions Wwittbstraction, appli-
cation, and the stock integral (Figure 6). We treat functions in a
standard way. Notationally, we skip specifyingin abstractions
when the choice of is clear. Computing closed-form solutions
for integrals is not always feasible or possible, so integrals can-
not be completely eliminated from the target language. The inte-
gral is well-formed if its integrand is real-valued and summable (a
function f is u-summabléf [ f du is finite). We require users of
the target language (compiler writers) to manually ensure summa-
bility; this is reasonable for a back-end language. We have veri-
fied summability for each use of stock integration in the compilers

presented in this section. Although a measure-theoretic concept,

stock integration is close enough to the notion of integration used
by numerical and symbolic solvers to be useful as a compilation
target. Recall, stock integration ovérand £ is ordinary summa-
tion and Lebesgue integration, respectively. For most applications,
Lebesgue integration will coincide with Riemann integration.

PREPRINT — DO NOT DISTRIBUTE

monad [20]. We also need the judgmént- ¢ $ § — §’, which
invokes the probability compiler on the distribution corresponding
to the RV transform body in the contexfY'.

5.3 ThepPDF calculation procedure

We structure the@DF calculation procedure as we did the type sys-
tem: the judgment on distributions prepares a call to the judgment
on RV transforms. TheDF of a well-formed progranpdf e is
given by thes satisfying®;® + e¢ ~ ¢. The judgmentl; A +

e n ¢ calculates theedr ¢ of the distributione underY and A
(Figure 8). Ruler-RAND gives thepDF of Uniform(0,1): the indi-
cator function or{0, 1). Rulesp-RET andP-BIND build the contexts
and invoke the next compiler. The real work begins in the judgment
T;A + e ~ §, which computes theDdF § corresponding to the
RV transform body underY andA. We present this judgment in
two parts, one each for univariate and multivariate transforms. The
multivariate transforms must deal with the issue of dependence be-
tween inputs or between outputs of the transform.

Univariate transforms We useunivariatefor RV transforms be-
tween spaces that are not product spaces. The correctnesssof rule
P-LOG, P-EXP, P-LINEAR, andP-SCALE is given by the following
lemma.

2011/11/10



T;AbFe~d

T;AbFloge~ Ax:R. 0 (expz)*expx FrLoe
T;Abke~§ b-EXP
T;AFexpe~ Az :R. ¢ (logz)* (1/x)
FV(Ez)ﬁA:@ T;AFE1 ~s 0 P-LINEAR
T;Abei+ex~Az:R. 6 (v —e2)
T;AbFe~ 9 >0 P-SCALE
T;AFlxe~ Ax:R. 4§ (x/l)*(1/1)
T;AFe~§
T;AFnege~ Az:R. 0 (—x) PrNEG
T;Abke~§
. P-INV
T;AkFinve ~ Az :R. ¢ (1/x) * (1/(x * x))

Figure 9. The transform-taeDF converter,Y'; A - e ~~§, univari-
ate cases.

Lemma 5.1. For absolutely continuous distributioand Q on
R and a functiom : R — R such thatQ(Y) = P(h~'[Y]), if his
strictly increasing, differentiable and invertible, then the function

f— 71 [p—
9(y) = f(h™(y)) &y
is apDFof Q, wheref is the derivative of thebdF F' of P.

Proof. The derivative of a&DF is aPDF. TheCDF G of Q is
G(y) = Q((—00,y]) = P(h™'[(=o0,9]])
=P((—o0,h ' (y)]) = F(h™' (),

where we have used the fact that thereimage of(—oo, y] is
(—o0, h™!(y)] becausé is strictly increasing and invertible. The
claim follows from the fact thag is the derivative of. O

The lemma is easily modified far-NEG and alsopP-INV; an
“extra” minus sign appears because they consist of stiiettyeas-
ing components. It is possible to define a versiorPefCALE for
negative literals, as well as integer version®afiEG, P-LINEAR,
andpP-scALE. With these rules (and-vAR, discussed below) we
can already compute some continuasrs. Consider the stan-
dard exponential from Section 3.2; we derive RtsF with 0; ()
std_exponential ~ ¢, which builds the contexts. := u and
T := u : R ~ random and invokes the chain

T;AbF —logu~d & :=x".(0<z" <1)
T:AF logu~ &
T:AFu~ 6"

We j-reduce for clarity. The chain ends withvAR, which gives
the PDF of Uniform(0,1) for§”; then,P-LoG andP-NEG produce
8’ andd. The latter is equivalent tdz . (0 < z) * exp (—z), which

is easily seen to be threDF of the standard exponential. Likewise,
the PDF of uniform 1 £4 is correctly calculated to be

d:=Xr.(0< (z—e1)/(e2—e1) <1)*(1/(e2 — 1)),

which is equivalentto\z . (g1 < z < e2) * (1/(e2 —€1)). We do
not provide rules fosin, cos, andtan because we are unaware of
any simple closed-form expression for the correspondinis.

0 =X’ . (0<expz’ <1)xexpa’
d:=Xr.(0<exp (—z)<1)*exp (—x).

Multivariate transforms We usemultivariatefor RV transforms

0F1:7 7 countable oLt
T;AFEL~ Xz 7o (z=1)
T+ e : bool T;AFe$ Ax:bool. (z)— ¢

T;A ke~ Az : bool.if x thendelse 1l — 0 P-BOOL

{T’ A e L 57;}2':273 {T, AF & M 62’}1’:1,2,3
T; AFif 1 then g else ez ~~
AT . 01 true * 9o x + 01 false * 93 =

A={z}U{ys,..,ym}  T(T;A) =6
TiAbz~ Az [ A(y1, s Ym) + 6
A=Az, .,z U{y1, s Ym} J(T;A) =6
TiAE (21,0, Tn) ~ AM@1, oy @) o [ AY1, 0y Ym) + O
T;AkFe~§ bEST
T;AFfste ~ Az, [Ay.6 (z,y)
T;A}—El L&‘Q {T;Al‘&‘iwdi}i:LQ
T;A |— (81,52) ~ )\(131,172) . (51 Ty * (52 i)
T;A}—El J_EQ {T;A"Ei ng}i:lﬂ
TiAber+er~ ARO[ AR, §1z%02 (t—x)

P-IF

P-VAR

P-VARS

P-PAIR

P-PLUS

Figure 10. The transform-ta®DF converter, multivariate cases.

T;i0kend J(T;A) — &

J-NIL
JY,x:7~eAjx)— daxd

J-CONS

J(T;0) — 1

Figure 11. The jointPDF body constructor7 (1; A) — 0.

Rulep-LIT states that themF of a point mass distribution dris
simply the indicator function ofil}. The transforms corresponding
to the rules in this section tend to be less obvious; the transform in
question forp-LIT is the constant function oh whose argument
may be a tuple. Rul@-BooL calculates theemF of a Boolean
random variable, which is a simple expression of the probability
that the random variable is true. We thus invoke the probability
compiler in the current context to compute this probabiity his
rule covers the cases far and =. The ability to represent the
PMF of a Boolean random variable allows us to encode arbitrary
probability queries. Rulee-IF computes therDF of a mixture,
which is a weighted combination of the components, where
the mixing probability is the probability th&-condition istrue.

For this to be valid, théf-condition must be independent of its
branches, as required. For instance,rbe of

var x ~ random in
var y ~ uniform 2 3 in return (if z < 1/2 then z else y).

isnotequivalentto\z. (1/2) x (0<x<1) + (1/2) % (2<z<3),
as would be calculated without the restriction (there should be no
probability mass oifil /2, 1]).

Rule P-VvAR is a special case ¢f-VARS. The transform corre-
sponding toP-VARS is a function that returns a permutation of a
subset of components of its tuple argument. We assume., z,
andys, ..., ym, are distinct, and we use to denote disjoint union.
The resultingpDF is a marginalPDF. The marginal PDF of a joint
PDF f on A x B is given byg(z) = [Xy. f(z,y) diig; g is
a PDFon A whose density at is given by adding up the contri-

to or from a product space. The presence of multiple dimensions bution of the jointPDF along the other dimensio3. The corre-
introduces the issue of dependence between the inputs or betweesponding process is one which generates tuples but then discards
the outputs of the transform, making it difficult to provide rules that the second component, returning the first. We generalize to higher
work in the general case. As a result, some of the following rules dimensions by integrating out random variables not appearing in

introduce specific independence requirements.

PREPRINT — DO NOT DISTRIBUTE

the result tuple. When this set is empiy. (= 0), the integral re-

10 2011/11/10



duces tod. The resultingeDF may be computationally inefficient

due to a large number of nested integrals. More efficient schemes
that take advantage of the graphical structure of the probabilistic

model, such asariable elimination are possible [26]. The judg-
ment7(T;A) — § constructs the body of the joimDF of the
active random variables (Figure 11). RulecoNs first computes

the PDF of e, parametric in all of the preceding random variables

(thus, invoking the distribution-teDF converter with no active ran-
dom variables). It then constructs the product with rines of the
remaining active variables; the product of these parametris is
the jointPDF. The termsS andd’ in J-conshave typer — R and

R, respectively. The judgment returns an open term and relies on
the fact that the free variables will be bound appropriately by the

invoking judgment. Rul@-FsTis analogous t@-VARS; we ask for
a PDF and compute the marginabr of the first component. We
define an analogous rule fend. Rulesp-PAIR and P-PLUS state
the well known results that the joirbF and thepDF of the sum of

independent random variables is the product of and convolution of

their individualPDFs, respectively.

On the face of it, these rules handle mixture models and joint
models, but where they really shine is on general hierarchical mod-

els. For example, thebdFr of

hier := var x ~ random in var y ~ uniform 0 x in return y

6. Related Work

Our work builds on a long tradition of probabilistic functional lan-
guages, most connected to the probability monad in some way.
They work by incorporating distributional semantics into a func-
tional language, so that one can express values which represent a
distributionover possible outcomes. The distribution can either be
manifest (available to the programmer) or implicit (existing only
in the metatheory). An early incarnation of the latter was given by
Kozen in [14], in which he provides the semantics for an imperative
language endowed with a random number primitive supplying sam-
ples from Uniform(0,1). Values of typé in the object language are
given semantics in functions of tyged — [0, 1]) — [0, 1] in the
metatheory. These functions represent distributions dvend sat-

isfy the expected laws for measures. Kozen's work is far-reaching
and will continue to inspire future languages: it can accommodate
continuous and hybrid distributions; it handles unbounded itera-
tion (general recursion), a traditionally thorny issue for probabilis-
tic languages; and it even provides a treatment of distributions on
function types. HoweveRDFs are not addressed at all.

Though not explicitly cast as functional or monadic, Kozen’s
approach forms the basis for Audebaud and Paulin-Mohring’s
monadic development for reasoning about randomized algorithms
in coQ[2]. Their focus is on verification, and they define the prob-
ability monad from first principles (modulo an axiomatization of

is not immediately obvious. The process is generated by sampling arithmetic on the [0,1] interval), whereas we provide it axiomati-

a valuez uniformly from (0,1), and then sampling uniformly from

(0, ), discardingz. We calculate thedrF with 0; 0 + hier ~ 6,

which buildsY := y : R ~ uniform 0 z,z : R ~ random and
=y, xfor T; Ay~ 5. Rulep-vAR then produces

)\y./)\w.((0<(y—O)/(a:—O)<1)*1/(w—0))*(0<m<1)*1

for 6, where we havé-reduced for clarity. The body of the inn&f
abstraction is generated by the joRtiF body constructor; the two
non-trivial multiplicands are the parametmoF of uniform 0 =
and thepDF of random, respectively. With some manipulation we
can shows corresponds tgf(y) = fyl 1/xz de = —log(y) for

cally. We hope to inspire a cross-fertilization of ideas between the
efforts as we bring our theory ®@DFs intocoQ.

While suitable for semantics and verification, Kozen’s represen-
tation is not ideal for direct use in computing certain operations. For
instance, it is unclear how to sample or compute general expecta-
tions efficiently given a term of typéA — [0, 1]) — [0, 1]. More
recent works explore alternate concrete embodiments of the prob-
ability monad; Ramsey and Pfeffer discuss some of the possibili-
ties [20]. A popular choice is to represent distributions as weighted
lists or trees. This has the drawback that only distributions with
finitely many outcomes are expressible (ruling out essentially all
commonly used continuous distributions), amdrs are the only

y € (0,1) and zero otherwise. The rules do not perform algebraic supported form oPDFs. On the other hand, distributions can occur

simplifications, but the benefit of automation can still be felt clearly.

Modularity Some RV transforms are inconvenient to work with,
preventing us from calculating certadmFs. For example, we can-

not calculate theDF of std_normal from scratch because its speci-
fication usegos, which we do not handle. However, the design al-

on arbitrary types, expectation and computing rives is straight-
forward, and the approach works well as an embedded domain-
specific languagepPEp [7], HANSEI [13], probability monads in
Haskell [20]). Dedicated languages likeaL [19] or Church [9]
offer more scope for program analysis, which is crucial for escap-
ing the limitations of an embedded approach and mitigates some of

lows us to modularly address cases like this, where we want to spe-the fundamental drawbacks of the representation. Ultimately, how-

cially handle theebFfor a specific distribution. We can add the rule
T; A b std_normal ~ ¢, whereg : = Az.exp(—xz*xz/2)/sqrt(2xm)

ever, these languages do not support continuous or hybrid distribu-
tions (nor theirrDFs) in a general sense. Sampling functions are a

is the PDF of the standard normal. This new rule is used by the fun alternative representation. They are usedpy[18] to support

joint body constructor whenevetd_normal appears on the spine
of a distribution, enabling the calculation pbFs for hierarchical
models usingtd_normal that were previously not compilable. For
example, theeDF of normal 1« o can now be calculated as

TiAbFosxaz+p~d 6 =" .pz"

TiAFoxa~ § =X’ (2 /o) x (1))

T;A b~ 6" 0:=Xz.¢ ((x —p)/o)*(1/0)
using the rule®-VAR, P-SCALE, andP-LINEAR, whereA := z and

T := x : R ~ std_normal. We can seé is equivalent to the classic
formula for the normaPDF, f(z) = ——J— exp(— 5.5 (z — p)?).

continuous and hybrid distributions in a true sense and also allow
distributions on arbitrary types. Distributions are represented by
sampling functions that return a sample from the distribution when
requested. Sampling and sampling-based routines are the only sup-
ported operations, thu=pFs are not accommodated.

Another recent work also rigorously supports continuous and
hybrid distributions by providing a measure transformer semantics
for a core functional calculus [4]. The work does not provides
but is novel for its ability to support conditional probability in the
presence of zero probability events in continuous spaces, a feature
necessary in many machine learning applications. Their formaliza-
tion is similar to ours, as both are based in standard measure theory.

Likewise, we can now handle distributions like the log-normal and They have independently recognized the importance of analyzing
mixture-of-Gaussians. To support an infinite discrete distribution distributions by their transformations, doing so in the context of

with a knownPDF, such as the Poisson distribution, we can add conditional probability, whereas we have developed the idea for
a new primitive to the core calculupdisson ¢) and handle it PDFs. This hints that reasoning via transforms may be a technique
specially in the distribution-teDF converter.

PREPRINT — DO NOT DISTRIBUTE 11 2011/11/10



that is more broadly applicable to other program analyses for prob- References

abilistic languages. ) ) ) ) [1] A. Agarwal, S. Bhat, A. Gray, and I. E. Grossmann. Automgtifath-
The Hierarchical Bayes CompileHgC) is a toolkit for im- ematical Program Transformations. Pnactical Aspects of Declara-

plementing hierarchical Bayesian models [5]. Its specification lan- tive Languages2010.

guage represents a dn‘ferent point in the de&gn_space: Essen_tlally, [2] P. Audebaud and C. Paulin-Mohring. Proofs of RandomizégbA

it removeseturn while adding a set of standard distributions (with rithms in Cog. InVlathematics of Program Constructiopages 49—68.

PDFs) to the core calculus. This guarantees that all constructible Springer, 2006.

models areac. Many powerful models ysed n mgchlne Ie_arnlng [3] C. Bishop. Pattern Recognition and Machine LearningSpringer,
are expressible inBC. However, something as basic as adding two 2006.

rﬁndom _Varlable_s 1S no.t' Fu.rthermore’ if a dIStrIrt])utlon OUthS.Id.e Orf] [4] J. Borgstram, A. D. Gordon, M. Greenberg, J. Margetsomw, &nV.
the provided set IS required, it must bej a‘_’de_d tothe core. T 1S Is the Gael. Measure Transformer Semantics for Bayesian Machinmiea
fundamental tension surroundimeturn: with it, the core is mini- ing. In European Symposium on Programmipgges 77-96, 2011.
mal, expresswlty is high, aneiDFs are non-trivial; without itPDFs ... [5] H. Daune Ill. HBC: Hierarchical Bayes Compiler, 2007. URL
are _eaS|Iy supp_orted, but the core becomes large, and expressivity http://hal3.name/HBC.

is crippled.HBC is not formally defined.

An entirely different tradition incorporates probabilistic se- ) } e
mantics into logic programming languages (Markov Logic [21], [7] M. Erwig and S. Kollmansberger. Functional Pearls: Pholistic
BLOG [16], BLP [12], PRISM[22]). These languages are well suited Functional Programming in Haskelournal of Functional Program-
for probabilistic knowledge engineering and statistical relational ming 16(01)'21_34_’ 2005. B .
learning. In Markov Logic, for instance, programmers associate [8] M- Giry. A Categorical Approach to Probability Theorgategorical
higher weights with logical clauses that are more strongly believed Aspects of Topology and Analys#15:68-85, 1981.
to hold. The semantics of a set of clauses is giverubgirected [9] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tene
graphical modelswith the weights determining the potential func- zaqu_. (I:Ihur‘l“'lh- A Lagguage for Generative ModelsUfrcertainty in
tions (e.g. by Boltzmann weighting). Certain continuous distri- rificial Intelligence 2008. _ _
butions can be supported by manipulating the potential function [10] A. G. Gray, B. Fischer, J. Schumann, and W. Buntine. Autitna
calculation. SupportingdFs in this context should not be prob- Derivation of Statistical Algorithms: The EM Family and Beybrin
lematic; the potential functions (essentially, unnormalizeds) Advances in Ne“r_a' Information Processing Sysie083.
always exist, by design. However, likesc, it appears these lan-  [11] M. Hoyrup, C. Rojas, and K. Weihrauch. The Radon-Nikwdgper-
guages are not quite as expressive as is possible in a probabilistic ~ ator is not computable. I@omputability & Complexity in Analysis
functional language. 2011 _ _ _ _

The AutoBayes system [10] shares a key feature with our lan- [12] K. Kersting and L. De Raedt. Bayesian Logic Programmirigedry

[6] L. Devroye. Non-Uniform Random Variate Generation, 698

guage in thaPDFs are manifest in the object language. AutoBayes and Tool. Inintroduction to Statistical Relational Learning007.
automates the derivation of maximum likelihood and Bayesian es- [13] O. Kiselyov and C. Shan. Embedded Probabilistic Progrargmin
timators for a significant class of statistical models, with a focus Working Conference on Domain Specific Languaggsinger, 2009.
on code generation, and can express continuous distributions and14] D. Kozen. Semantics of Probabilistic Progrardsurnal of Computer
PDFs. However, despite their focus on correctness-by-construction, and System Science2(3):328-350, 1981.

the language is not formally defined. Furthermore, itis unclear how [15] T. Mhamdi, O. Hasan, and S. Tahar. On the Formalizationhef t
general the language actually i®. how “custom” the models can Lebesgue Integration Theory in HOLnteractive Theorem Proving
be. Our work could serve as a formal basis for their system. pages 387-402, 2010.

[16] B. Milch, B. Marthi, S. Russell, D. Sontag, D. Ong, andkalobov.
BLOG: Probabilistic Models with Unknown Objects. limternational

7. Conclusion Joint Conference on Artificial Intelligenceolume 19, 2005.

We have presented a formal |anguage Capab|e of expressing dis.[l?] O.. Nielsen. AI"I Introduction to Integration and Measure Theory
crete, continuous and hybrid distributions and tirgirs. Our novel Wiley-Interscience, 1997.

contributions include a type system for absolutely continuous dis- [18] S. Park, F. Pfenning, and S. Thrun. A Probabilistic Liznge based
tributions and a modularDF calculation procedure. The type sys- upon Sampling Functions. IRrinciples of Programming Languages
tem uses the new ideas of RV transforms and non-nullifying func- pages 171-182. ACM New York, NY, USA, 2005.

tions. There are several interesting avenues for future work. The [19] A. Pfeffer. IBAL: A Probabilistic Rational Programmingabguage.
first is to addres®DFs in the context of conditional probabmty, In International Joint Conference on Artificial Intelligencz001.
perhaps by incorporating our formalizationribrs with the ideas [20] N. Ramsey and A. Pfeffer. Stochastic Lambda Calculus andadds
presented in [4]. Secondly, to provide a complete account of con- of Probability Distributions. volume 37, pages 154-165. ACd02.
tinuous probability, one must support expectation. Generically sup- [21] M. Richardson and P. Domingos. Markov Logic Networkéachine
porting expectation requires a treatment of integrability or summa- Learning 62(1):107-136, 2006.

bility; reasoning via the RV transform may be a productive route. [22] T. Sato and Y. Kameya. PRISM: A Symbolic-Statistical Mg
Finally, combining this work with a formal language for optimiza- Language. Innternational Joint Conference on Artificial Intelligence
tion such as [1] would create a true formal languagestatistics pages 1330-1339, 1997.

which would be able to express statistical problems in the object [23] p. Scott. Parametric Statistical Modeling by Minimum dgtated
language itself. Current languages exprasbability; any notion Square ErrorTechnometrics43(3):274-285, 2001.

of statistics is outside the language. [24] B. Silverman. Density Estimation for Statistics and Data Analysis

Chapman & Hall/CRC, 1986.
[25] R. Solovay. A Model of Set-Theory in Which Every Set of Reis
ACknOWIedgmentS Lebesgue Measurabldnnals of Mathemati¢cpages 1-56, 1970.
We thank Prof. Christopher Heil for valuable input on the idea of [26] L. wasserman. All of Statistics: A Concise Course in Statistical
non-nullifying functions. We also thank the anonymous reviewers, Inference Springer, 2004.
whose thoughtful suggestions have greatly improved the paper.

PREPRINT — DO NOT DISTRIBUTE 12 2011/11/10



